Exercice Donner les dérivées des fonctions suivantes :

- 1. $f_1(x) = 7$
- 2. $f_2(x) = x^4$
- 3. $f_3(x) = cos(x)$
- 4. $f_4(x) = 3\sqrt{x}$

Exercice Soit f une fonction définie sur un intervalle I contenant le réel a telle que f est dérivable en a (autrement dit f'(a) existe). Quelle est l'expression de la fonction affine dont la courbe représentative passe par le point de coordonnées (a; f(a)) et a pour coefficient directeur f'(a)?

Exercice Déterminer les variations des fonctions suivantes définies sur \mathbb{R} en calculant leur dérivée et en étudiant leur signe (faire un tableau de variation) :

- 1. $f: x \longmapsto 3x^2 + 5x 3$
- 2. $g: x \longmapsto -5x^2 3x + 5$

Exercice Soit u définie sur \mathbb{R} par $u(x) = 5x^2 + 2x$. Soit v définie sur \mathbb{R} par $v(x) = 3x^2 + 2$.

- 1. Déterminer l'expression de la fonction $u \circ v$.
- 2. Déterminer l'expresion des fonctions u', v' et $(u \circ v)'$.
- 3. Remplir le tableau suivant :

a	v(a)	u'(v(a))	v'(a)	$(u \circ v)'(a)$
0				
1				
2				

- 4. À l'aide du tableau et quelques calculs, faire une hypothèse sur l'expression que peut avoir $(u \circ v)'(x)$ en fonction de u'(v(x)) et v'(x).
- 5. Vérifier l'hypothèse par un calcul littéral utilisant les expressions des fonctions.