Fonction tangente

Définition La fonction tangente est définie pour tout réel x tel que $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$ par

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Nous noterons ici D l'ensemble de définition de la fonction tangente.

- 1. Montrer que $\tan(x+\pi) = \tan(\pi)$ pour tout x dans D.
- 2. De même, montrer que tan(-x) = -tan(x) pour tout x dans D.
- 3. Calculer la dérivée de la fonction tan. Montrer que $\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$.
- 4. Quel est le signe de la dérivée de tan? En déduire la variation de tan sur $]0; \frac{\pi}{2}[$.
- 5. Déterminer $\lim_{x\to 0} \tan(x)$ et $\lim_{x\to \frac{\pi}{2}^-} \tan(x)$. Sachant 2, en déduire $\lim_{x\to -\frac{\pi}{2}^+} \tan(x)$.
- 6. Représenter la courbe représentative de tan sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\text{ et } \left| \frac{\pi}{2}; \frac{3\pi}{2} \right|.$

LYCÉE ERNEST BICHAT

TS

2009 - 2010

Fonction tangente

Définition La fonction tangente est définie pour tout réel x tel que $x \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$ par

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Nous noterons ici D l'ensemble de définition de la fonction tangente.

- 1. Montrer que $tan(x + \pi) = tan(\pi)$ pour tout x dans D.
- 2. De même, montrer que tan(-x) = -tan(x) pour tout x dans D.
- 3. Calculer la dérivée de la fonction tan. Montrer que $\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$.
- 4. Quel est le signe de la dérivée de tan? En déduire la variation de tan sur $]0; \frac{\pi}{2}[$.
- 5. Déterminer $\lim_{x\to 0} \tan(x)$ et $\lim_{x\to \frac{\pi}{2}^-} \tan(x)$. Sachant 2, en déduire $\lim_{x\to -\frac{\pi}{2}^+} \tan(x)$.
- 6. Représenter la courbe représentative de tan sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\text{ et } \left| \frac{\pi}{2}; \frac{3\pi}{2} \right|.$