Chapitre 1

Intégrales

Activité p226 (suites adjacentes, signe de fonction, comparaison de courbes, aires)

Activité 3p229 avec le rappel :
$$\sum_{k=0}^{k=n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

A Aire sous une courbe

Étant donné que certaines parties du plan ont une aire, nous admettons également que :

- si deux parties disjointes X et Y ont une aire, alors $\operatorname{aire}(X \cup Y) = \operatorname{aire}(X) + \operatorname{aire}(Y)$.
- Si une partie X est incluse dans une partie Y, alors $aire(X) \le aire(Y)$.

Dessin

Proposition Soit f une fonction continue et positive sur un intervalle. Alors le domaine situé sous sa courbe (et au dessus de l'axe des abcisses) admet une aire.

Preuve : Admis.

On peut encadrer cette aire par deux suites adjacentes, dont la limite est donc l'aire du domaine.

Dessin

B Intégrale d'une fonction continue et positive

On considère un repère orthogonal $(O; \overrightarrow{OI}; \overrightarrow{OJ})$. Soit K le point tel que OIKJ est un rectangle. L'unité d'aire est alors l'aire du rectangle OIKJ.

Définition Soit f une fonction continue et positive sur un intervalle [a;b]. L'intégrale de f sur [a;b], notée $\int_a^b f(x)dx$, est l'aire du domaine situé sous la courbe.

Remarque le symbole \int représente une somme, f(x)d(x) représente l'aire d'un rectangle de largeur (très petite) dx et de hauteur f(x). La variable x est muette, c'est à dire :

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \dots$$

Exemple Cas évident de la fonction en escaliers.

Exemple Cas facile de la fonction affine.

$$f(x) = 2x + 3 \text{ sur } [1;4] : \frac{(4-1)\times(f(4)-f(1))}{2} + (4-1)\times f(1) = \frac{3\times6}{2} + 3\times5 = 9 + 15 = 24.$$

 \rightarrow Exercices 1,2,3p245

Activité 1p228 (sauf 3., éventuellement en DM), nivellement de terrain.

Définition La valeur moyenne de la fonction f sur [a; b] est le réel

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

L'interprétation graphique de cette valeur moyenne est que si on la note λ , on a $\int_a^b f(x)dx = \lambda(b-a)$. Autrement dit l'aire sous la courbe est égale à celle du rectangle de hauteur λ (repenser à l'activité sur le nivellement de terrain).

On donne :
$$\int_0^1 x^2 dx = \frac{1}{3}$$

- \rightarrow Exercices 4,6p245
- \rightarrow Exercices 12,9,11p246 (14 en DM)
- → Exercices 16,18p246 (20 en DM) (valeur moyenne)

\mathbf{C} Fonctions de signe quelconque

Définition Si f est une fonction continue et négative sur [a;b], on définit

$$\int_{a}^{b} f(x)dx = -\int_{a}^{b} -f(x)dx$$

Définition Dans le cas d'une fonction continue qui change de signe sur [a;b], l'intégrale de f sur [a;b]est la somme algébrique des intégrales de f sur les intervalles sur lesquels f est de signe constant.

Dessin

On convient que

$$\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$$

On donne la même définition de valeur moyenne pour la fonction continue que pour le cas d'une fonction continue positive.

 \rightarrow Exercices 21,22,23p246, 25,27p247, 29p247

D Propriétés de l'intégrale

On admet que l'intégrale est linéaire, ce qui signifie :

•
$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
•
$$\int_{a}^{b} (\lambda f(x))dx = \lambda \int_{a}^{b} f(x)dx.$$

D. PROPRIÉTÉS DE L'INTÉGRALE

3

On admet également la relation de Chasles :

Proposition

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

où a,b et c sont dans un intervalle où f est intégrable.

Il découle des définitions que :

Proposition

- Si
$$f(x) \ge 0$$
 sur $[a; b]$, alors $\int_{a}^{b} f(x)dx \ge 0$

- Si
$$f(x) \le 0$$
 sur $[a; b]$, alors $\int_a^b f(x) dx \le 0$

On peut alors prouver :

Proposition Si pour tout
$$x \in [a; b]$$
, $f(x) \le g(x)$, alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Preuve : On utilise la fonction f - g, la propriété précédente et la linéarité.

Proposition (Inégalité de la moyenne) Si il existe des réels m et M tels que pour tout $x \in [a; b]$, $m \le f(x) \le M$, alors

$$m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M$$

Preuve : On utilise la propriété précédente, on calcule les intégrales simples, puis on divise par (b-a).

- \rightarrow Exercices 31,33p247, 34p247
- \rightarrow Exercices 36,37p248
- → Exercices 39p248 (signe), 40p248 (comparaison), 43p248 (inégalité de la moyenne)