Devoir surveillé n°5 – mathématiques
$$20/01/2010$$

Exercice 1(5 points) On considère la fonction f définie sur $R \setminus \{0\}$ par $f(x) = \frac{1}{x^2}$.

- 1. Déterminer, en utilisant la définition de nombre dérivé en un point, le nombre f'(2).
- 2. En déduire que pour h proche de 0, $\frac{1}{(2+h)^2} \simeq \frac{1}{4}(1-h)$.
- 3. En déduire une approximation de $\frac{1}{2,2^2}$. Les calculs, qui ne nécessitent pas ici de calculatrice, seront détaillés.

Exercice 2(4 points) On considère les fonctions f et g définies par :

$$- f(x) = 5x^3 - 2x + 5$$

$$-g(x) = \sqrt{x}(8x - 2)$$

- 1. Indiquer le domaine de définition des deux fonctions.
- 2. Préciser sur quels intervalles les fonction sont dérivables.
- 3. Calculer les dérivées de f et g.

Exercice 3(6 points) Les trois questions sont indépendantes.

- 1. (a) Résoudre dans \mathbb{R} l'équation $\cos x = -\frac{1}{2}$.
 - (b) Résoudre dans $[0; \pi]$ l'équation $\cos\left(\frac{\pi}{2} 2x\right) = \cos x$.
- 2. Soit θ un nombre de $\left[\frac{\pi}{2};\pi\right]$ tel que $\sin\theta=\frac{4}{5}$. Déterminer la valeur exacte de $\cos\theta$.

Exercice 4(5 points)

- 1. Le point A a pour coordonnées polaires $\left(2; \frac{\pi}{6}\right)$. Déterminer ses coordonnées cartésiennes.
- 2. Le point B a pour coordonnées cartésiennes $(-\sqrt{3};-1)$. Déterminer ses coordonnées polaires.
- 3. Placer précisément les points A et B sur un repère en conservant les traits de construction.