Chapitre 1

Translations et homothéties

→ Exercices 1,3,6p364 (en DM, révision de propriétés de transformations)

Nous nous plaçons ici soit dans le plan soit dans l'espace, mais utiliserons uniquement le terme espace pour rester général.

A Définitions

1 Translation

Définition Soit \overrightarrow{u} un vecteur de l'espace. La translation de vecteur \overrightarrow{u} est la transformation qui à tout point M de l'espace associe le point M' tel que $\overrightarrow{MM'} = \overrightarrow{u}$. On la note parfois $t_{\overrightarrow{u}}$. On dit que M' est le translaté de M par $t_{\overrightarrow{u}}$.

Dessin

Proposition Soit $t_{\overrightarrow{u}}$ une translation.

- Si \overrightarrow{u} est non nul alors $t_{\overrightarrow{u}}$ n'admet aucun point fixe (point M tel que $t_{\overrightarrow{u}}(M) = M$).
- Soit $M' = t_{\overrightarrow{M}}(M)$ et $N' = t_{\overrightarrow{M}}(N)$. Alors $\overrightarrow{M'N'} = \overrightarrow{MN}$ (on a un parallélogramme).

Preuve: Égalités vectorielles avec Chasles.

 $\rightarrow \textbf{Exercices} \ 14{,}15{,}16p366$

2 Homothétie

Définition Soit O un point de l'espace et k un nombre réel non nul (k peut être négatif). On appelle homothétie de centre O et de rapport k la transformation qui à tout point M de l'espace associe le point M' tel que $\overrightarrow{OM'} = k\overrightarrow{OM}$. On la note parfois $h_{O,k}$.

Dessin

Proposition Soit h une homothétie de centre O et de rapport k. Alors :

- 1. Si $k \neq 1$, alors le seul point fixe de h est O.
- 2. Soit M' = h(M). Alors O, M et M' sont alignés.
- 3. Soit N' = h(N). Alors $\overrightarrow{M'N'} = k\overrightarrow{MN}$.
- 4. Si M, N et O ne sont pas alignés, alors M et N avec leurs images forment avec O une configuration de Thalès.

Preuve : Égalités vectorielles avec Chasles

- → Exercices 8p364, 9,10,11p365 (éléments d'une homothétie, différentes représentations)
- \rightarrow Exercices 17,18p366 (constructions simples)
- → Exercices 21,22p366 (succession de translation et homothétie) 22.2 difficile? Voir p362

B Propriétés

Proposition Translations et homothéties conservent la colinéarité (de deux vecteurs).

Preuve : Cela vient des propriétés précédentes.

On a $\overrightarrow{A'B'} = k\overrightarrow{AB}$ et $\overrightarrow{C'D'} = k\overrightarrow{CD}$ (k = 1 si la transformation est une translation). Donc si $\overrightarrow{AB} = x\overrightarrow{CD}$, on a alors $\overrightarrow{A'B'} = x\overrightarrow{C'D'}$.

Proposition Translations et homothéties conservent le barycentre, et donc l'alignement.

Preuve: Si $\Sigma a_i \overrightarrow{GA_i} = \overrightarrow{0}$, alors, puisque $\overrightarrow{G'A_i'} = k\overrightarrow{GA_i}$, $\Sigma a_i \frac{1}{k} \overrightarrow{G'A_i'} = \overrightarrow{0}$ et donc $\Sigma a_i \overrightarrow{G'A_i'} = \overrightarrow{0}$ Autrement dit : l'image d'un barycentre est le barycentre des images Conséquences :

Proposition

- L'image d'une droite est une droite;
- L'image d'un plan est un plan parallèle.
- L'image d'un segment [AB] est le segment dont les extrémités sont les images de de A et B.
- L'image de l'intersection de deux droites est l'intersection de l'image des droites
- L'image d'un cercle de rayon R est un cercle, de même rayon pour une translation, de rayon |k|R pour une homothétie de rayon R, et de centre l'image du centre.

Proposition Les angles orientés sont conservés par une translation ou une homothétie.

Proposition Une homothétie de rapport k multiplie :

- Les longueurs par |k|;
- Les aires par k^2 ;
- Les volumes par $|k|^3$.

(Les homothéties font des agrandissements et des réductions)

- \rightarrow Exercices 25,24p366
- \rightarrow Exercices 27,28 (en DM)p367
- \rightarrow Exercices 31,33p367
- \rightarrow Exercices 35p368 (long)
- \rightarrow Exercices 40p368 (en DM : chemin le plus court avec rivière), 42p369