Devoir surveillé n°01 – mathématiques 04/10/2010

Exercice 1(5 points) Une fonction f vérifie l'inégalité suivante sur $]0; +\infty[$:

$$\frac{2x^3 - 2x - 1}{x^3} \le f(x) \le 2 + \frac{5}{x^2}$$

Étudier l'existence éventuelle de limites pour f(x) en 0 et en $+\infty$.

Exercice 2(8 points) Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = \frac{x^3 - x + 2}{x^2 + 1}$.

- 1. Montrer que la droite d'équation y = x est asymptote à la courbe représentative de la fonction f en $+\infty$.
- 2. On note f' la dérivée de la fonction f. Calculer f'(x).
- 3. On admet que $f'(x) \ge 0$ équivaut à $x \in [1; +\infty[$.
 - (a) Après avoir déterminé les limites de f aux bornes de son ensemble de définition, donner le tableau complet des variations de f.
 - (b) Démontrer que l'équation f(x) = 3 admet une unique solution α . Donner un encadrement de α à 10^{-2} près.

Exercice 3(7 points) La courbe (C) ci-contre représente une fonction f définie sur $[0; +\infty[$. On sait que :

- f(0) = 0 et f(2) = 0;
- La courbe (C) admet l'axe des abscisses pour asymptote en $+\infty$.

Toutes les réponses devront être justifiées.

- 1. Quelle est la valeur de $\lim_{x\to +\infty} f(x)$?
- 2. La droite d'équation x = 0 est-elle asymptote à la courbe (C)?
- 3. Une des trois courbes ci-contre est la représentation graphique de la fonction g définie sur l'intervalle $]2; +\infty[$ par $g(x) = \frac{1}{f(x)}.$
 - (a) Pourquoi g est bien définie sur $]2; +\infty[?]$
 - (b) Déterminer $\lim_{x\to +\infty} g(x)$ et $\lim_{x\to 2^+} g(x)$
 - (c) Laquelle de ces trois courbes est la courbe représentative de la fonction g?



