Chapitre 1

Suites

Généralités Α

Activité retrouver les définitions de suites (arithmétiques, géométriques, récurrence, explicite, raison,...) Voir TB23 et exercice page 249

Définition

Une suite u est croissante si pour tout n, $u_{n+1} \ge u_n$ Une suite u est décroissante si pour tout n, $u_{n+1} \leq u_n$.

Exemple suite arithmétique de raison positive ou négative.

Définition

On dit qu'une suite n converge si $\lim_{n\to+\infty} u_n$ existe et est un nombre réel.

On dit qu'une suite diverge si elle ne converge pas (limite infinie ou pas de limite).

Exemple suites inverse, arithmétique $(r \neq 0)$ et cos.

Théorème Soit u une suite géométrique de raison q définie par $u_n = q^n$.

- Si q > 1, $\lim_{n \to +\infty} q^n = +\infty$ Si 0 < q < 1, $\lim_{n \to +\infty} q^n = 0$ Si -1 < q < 0, $\lim_{n \to +\infty} q^n = 0$ Si q < -1, $\lim_{n \to +\infty} q^n$ n'existe pas.

Activité 1p246 (utilisation de la calculatrice)

 \rightarrow Exercices 18p250 (sauf ln et e), 20,22p250

В Suites récurrente

1 Ordre 1

Définition Une suite récurrente d'ordre 1 est une suite u définie par $u_{n+1} = au_n + b$, où a et b sont des nombres réels, et dont le premier terme u_0 est donné.

On remarque que $u_{n+1} = f(u_n)$ où f est la fonction affine définie par f(n) = an + b.

Proposition

- Si a > 0, la fonction f est croissante, et la suite u est **monotone**. De plus,

2 CHAPITRE 1. SUITES

- Si $u_0 < u_1$, alors u est croissante.
- Si $u_0 > u_1$, alors u est décroissante.
- Si a<0, la fonction f est décroissante, et la suite u n'est pas monotone.

Théorème Soit f une fonction continue sur un intervalle I et u une suite définie par $u_{n+1} = f(u_n)$, prenant tous ses termes dans l'intervalle I.

Si la suite u converge vers l, alors f(l) = l.

 \rightarrow Exercices 44,46,48p253

2 linéaire d'ordre 2

Définition Une suite récurrente linéaire d'ordre 2 est une suite u définie par $u_{n+2} = au_{n+1} + bu_n$, où a et b sont des nombres réels, et dont les deux premiers termes u_0 et u_1 sont donnés.

Exemple $u_{n+2} = 2u_{n+1} + u_n$, $u_0 = 2$ et $u_1 = 1$. Exercices 61,63,64p255

lire calcul par méthode matricielle page 244

3 Récurrence

page 244, exercices page 257

 $\rightarrow \mathbf{Approfondissement}$