Moyenne et écart type

Lors d'un devoir commun, les classes de 1^{ère} A et 1^{ère} B ont obtenu les notes suivantes :

1 ^{ère} A	Note x_i	7	8	9	10	11	12	14
	Effectif n_i	1	4	11	11	1	1	1

1 ^{ère} B	Note x_i	2	3	5	9	13	14	15	16	17
	Effectif n_i	5	5	3	3	1	1	5	3	4

Calculer la médiane de ces séries

$$M\acute{e}_{\scriptscriptstyle A} = \dots$$

$$M\acute{e}_{\scriptscriptstyle R} = \dots$$

Moyenne

Définition

c'est un paramètre de position qui permet de mesurer la tendance centrale de la série.

$$m = \frac{n_1 x_1 + \dots + n_k x_k}{n_1 + \dots + n_k} = \frac{\sum_{i=1}^k n_i x_i}{\sum_{i=1}^k n_i}$$

notation de la calculette : \bar{x}

Moyenne de la $1^{\text{ère}}$ A : $m_A = ...$

Moyenne de la 1^{ère} B : $m_B = ...$

Etude de la dispersion des données

Définition

La variance d'une série est la moyenne des carrés des écarts à la moyenne

$$V = \frac{n_1(x_1 - m)^2 + \dots + n_k(x_k - m)^2}{n_1 + \dots + n_k} = \frac{\sum_{i=1}^k n_i(x_i - m)^2}{\sum_{i=1}^k n_i}$$

Compléter le tableau et calculer la variance de la série A

Completel le tableau et calcalei la variance de la selle l'i									
1 ^{ère} A	Note x_i	7	8	9	10	11	12	14	Totaux
	Effectif n_i	1	4	11	11	1	1	1	
	$n_i(x_i-m)^2$								

$$V_A = \frac{\dots}{\dots}$$

Propriété

la variance est égale à « moyenne des carrés moins carré de la moyenne »

$$V = \frac{n_1 x_1^2 + \dots + n_k x_k^2}{n_1 + \dots + n_k} - m^2 = \frac{\sum_{i=1}^k n_i x_i^2}{\sum_{i=1}^k n_i} - m^2$$

Compléter le tableau et retrouver la variance calculée précédemment

1 ^{ère} A	Note x_i	7	8	9	10	11	12	14	Totaux
	Effectif n_i	1	4	11	11	1	1	1	
	$n_i x_i^2$								

$$V_A = \frac{\cdots \cdots}{-(\cdots)^2} = \cdots$$

D/	c·	٠,٠	
Dé	tın	utu	on

1	'écart type mesure	la dis	persion	des	données	de l	a série	statistiq	iue autoui	de sa	move	enne.

C'est la racine carrée de la variance : $s = \sqrt{V}$

Notation de la calculette : σ

L'écart type de la série A est $\sigma_A \approx ...$ à 0,1 près.

Utiliser la calculette (Mode STAT) pour retrouver les résultats précédents, puis pour déterminer l'écart type de la série B.

$$s_B \approx ...$$
 à 0,1 près

Comparaison des deux séries :
Médiane, moyenne et écart type Un élève de 1 ^{ère} A, absent lors du devoir, obtient un peu plus tard la note de 19.
Un élève de 1 ^{ère} A, absent lors du devoir, obtient un peu plus tard la note de 19.
Calculer la médiane, la moyenne et l'écart type de la nouvelle série ; comparer avec la situation initiale

Transformation affine de données

Fidèle à sa bonté légendaire, le professeur des 1^{ère} A décide d'augmenter toutes les notes d'un point. Quel est 1'effet de cette modification sur la moyenne ? Sur l'écart type ? Sur la variance ?

.....

Estimant que le devoir était trop facile, et ne craignant pas pour les pneus de sa voiture, le professeur des 1^{ère} B multiplie toutes les notes par 0,8. Quel est l'effet de cette modification sur la moyenne ? Sur l'écart type ? Sur la variance ?

.....

Propriété

Une série statistique (x_i) a pour moyenne m, pour variance V et pour écart type s.

On considère la série statistique $(ax_i + b)$ où a et b sont des réels.

Sa moyenne est m' = am + b; sa variance est $V' = a^2V$; son écart type est s' = |a|s