Chapitre 1

Nombre dérivé et applications

A Limite en un réel

Activité fichier Acti01 lim

Définition Soit f une fonction et a et l des réels. On dit que f admet l pour limite en a si f(x) peut être rendu aussi proche de l que l'on veut lorsque x est suffisamment proche de a. On note alors

$$\lim_{x \to a} f(x) = l$$

Exemple Quatre courbes : une "normale", une non définie en a ayant une limite, une avec limite infinie, une avec des limites différentes à gauche et à droite.

Proposition Toutes les fonctions références connues pour l'instant (et en première) ont une limite en tout réel a de leur domaine de définition, et en plus :

$$\lim_{x \to a} f(x) = f(a)$$

\rightarrow Exercices 17p113

On s'intéresse cependant le plus souvent à des limites de f(x) en a tel que f(a) n'est pas définie. On utilise la propriété suivante :

Proposition Soit f et g deux fonctions et a un réel contenu dans un intervalle I. On suppose que :

- -g est définie sur I et que f est définie sur I sauf en a.
- pour tout $x \in I$, $x \neq a$, f(x) = g(x).
- -g admet une limite en a qui vaut g(a).

Alors f admet une limite en a qui vaut g(a).

Exemple
$$g(x) = x - 2$$
 et $f(x) = \frac{(x-2)(x-1)}{(x-1)}$. On a $\lim_{x \to 1} f(x) = -1$

Nous reverrons de manière plus complète les limites de fonctions.

B Nombre dérivé

Activité 1 et 2 p60 (vitesse moyenne, vitesse instantanée par calcul et graphiquement)

Définition Soit f une fonction définie sur un intervalle contenant un réel a. On dit que f est dérivable en a si l'expression :

$$\frac{f(a+h) - f(a)}{h}$$

admet une limite finie l lorsque h tend vers 0. On appelle **nombre dérivé de** f **en** a cette limite l. On la note f'(a).

On a

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \text{ ou } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

(en effet, on pose x = a + h)

Géométriquement, le nombre $\frac{f(a+h)-f(a)}{h}$ est la pente de la droite passant par (a;f(a)) et (a+h); f(a+h)). La limite est la pente (ou coefficient directeur) de la tangente à la courbe de f en x=a.

Exemple Dessin représentant les pentes, M s'approchant du point A(a; f(a)).

Exemple soit $f(x) = 2x^2 + 5x - 2$. et a = 1. Alors

$$\frac{f(a+h) - f(a)}{h} = \frac{2(1+h)^2 + 5(1+h) - 2 - (2(1)^2 + 5(1) - 2)}{h} = \frac{2h^2 + 4h + 5h}{h} = 2h + 9$$

Cette expression a pour limite 9 quand h tend vers 0. Donc f'(1) = 9

Exemple En général on s'intéresse plus au nombre dérivé d'une fonction en un point x_0 quelconque. En reprenant la fonction f précédente, on exprime alors :

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{2(x_0+h)^2 + 5(x_0+h) - 2 - (2x_0^2 + 5x_0 - 2)}{h} = \frac{2x_0^2 + 4x_0h + 5h}{h} = 2h + 4x_0 + 5h$$

Cette expression a pour limite $4x_0 + 5$ quand h tend vers 0. Donc $f'(x_0) = 4x_0 + 5$

- → Exercices 6,7p70 (détermination graphique)
- \rightarrow Exercices 1,2p70 (nombre dérivé de fonctions affines et trinômes du second degré)
- → Exercice 14p70 (fonction avec racine carrée, aide pour l'expression conjuguée)

Proposition Soit f une fonction admettant un nombre dérivé en a. Alors la tangente à la courbe de f en a a pour équation :

$$y = f'(a)(x - a) + f(a)$$

Preuve : Notons $y = \alpha x + \beta$ l'équation de la droite. La pente de la tangente vaut f'(a) comme remarqué précédemment, donc $\alpha = f'(a)$. Or la droite, tangente à la courbe de f, passe par le point de coordonnées (a; f(a)). Ainsi, $f(a) = f'(a)a + \beta$. Donc $\beta = f(a) - f'(a)a$ et l'équation de la droite est alors :

$$y = f'(a)x + f(a) - f'(a)a = f'(a)(x - a) + f(a)$$

 \rightarrow Exercices 4,5p70

C Approximation affine

Activité 4p61 (sauf 3. Faire observer que c'est la tangente, dont l'équation sera admise)

3

Proposition (Approximation affine) Soit f une fonction dérivable en a. Alors les valeurs prises par f(x) sont proches, autour de a, des valeurs prises par l'expression de sa tangente en a. Autrement dit :

$$f(x) \simeq f'(a)(x-a) + f(a)$$
 pour x proche de a

ou

$$f(a+h) \simeq f'(a)h + f(a)$$
 pour h proche de 0

On appelle cette approximation l'approximation affine de f au voisinage de 2

 \rightarrow Exercices 17,19,20p71

D Fonction dérivée

Définition Soit f une fonction définie sur un intervalle I. Si f est dérivable en tout réel de I, on dit que f est dérivable sur I et on définie une nouvelle fonction, la dérivée de f sur I, notée f', par :

$$f': x \longmapsto f'(x)$$

. où f'(x) est le nombre dérivé de f en x.

Exemple La fonction $f: x \mapsto ax^2 + bx + c$ est dérivable en tout x_0 de \mathbb{R} et $f'(x_0) = 2ax_0 + b$. Donc f est dérivable sur \mathbb{R} , et sa dérivée f' est définie par f'(x) = 2ax + b.

Proposition Voici donnée dans le tableau ci-dessous les dérivées de fonctions référence :

Fonction	Dérivée
$f(x) = k \text{ sur } \mathbb{R}$	$f'(x) = 0 \text{ sur } \mathbb{R}$
$f(x) = x \text{ sur } \mathbb{R}$	$f'(x) = 1 \text{ sur } \mathbb{R}$
$f(x) = x^n \text{ sur } \mathbb{R}$	$f'(x) = nx^{n-1} \text{ sur } \mathbb{R}$
$f(x) = \sqrt{x} \text{ sur } [0; +\infty[$	$f'(x) = \frac{1}{2\sqrt{x}} \text{ sur }]0; \infty[$
$f(x) = \frac{1}{x} \operatorname{sur} \mathbb{R}^*$	$f'(x) = -\frac{1}{x^2} \operatorname{sur} \mathbb{R}^*$

Preuve: Faire la preuve pour $f(x) = \frac{1}{x}$, les autres ayant été vues ou étant admises (x^n) .

Proposition (Opération sur les fonctions et dérivées) Soit u et v deux fonctions dérivables sur un même intervalle I.

- -(u+v) est dérivable et (u+v)'=u'+v'.
- -uv est dérivable et (uv)' = u'v + uv'.
- Cas particulier, si v(x)=k (v est constante égale à $k, k \in \mathbb{R}$), (ku)'=ku'.
- $-\frac{u}{v}$ est dérivable pour tout $x \in I$ tel que $v(x) \neq 0$ et $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$.
- Cas particulier, si u(x) = 1, on a u'(x) = 0 et donc $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$.

Preuve : Faire celle de u + v.

Exemple On souhaite dériver la fonction $f(x) = (3x+5)\sqrt{x}$. f peut être vue comme un produit : f = uv avec u(x) = 3x+5 et $v(x) = \sqrt{x}$ La fonction racine carrée v est dérivable sur]0; infty[ainsi que la fonction affine u. Donc f est dérivable sur $]0; +\infty[$ et f' = u'v + uv'. On a u'(x) = 3 et $v'(x) = \frac{1}{2\sqrt{x}}$, donc

$$f'(x) = 3 \times \sqrt{x} + (3x+5) \times \frac{1}{2\sqrt{x}}$$

- \rightarrow Exercices 30p71, 31,32,35,39,44p72, 46p73 \rightarrow Exercices 50,51p73 (ajout de recherches de tangentes par coefficient)