Équations de droites

1 Vecteur directeur

Définition 1 Un vecteur directeur d'une droite \mathscr{D} est un vecteur \overrightarrow{u} non nul dont la direction est celle de \mathscr{D} .

Remarque

- Soit A et B deux points de la droite \mathscr{D} . Alors le vecteur \overrightarrow{AB} est un vecteur directeur de la droite \mathscr{D} .
- Une droite \mathscr{D} est totalement définie par un point A et un vecteur directeur \overrightarrow{u} . Pour la tracer, il suffit de placer le point A, puis le point B tel que $\overrightarrow{AB} = \overrightarrow{u}$.

2 Équations de droites

On considère le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$.

Théorème 1

- Toute droite \mathcal{D} non parallèle à l'axe des ordonnées a une équation de la forme y = ax + b où a et b sont deux nombres fixés.
- Toute droite parallèle à l'axe des ordonnées a une équation de la forme x = c, où c est un nombre fixé.

Note: Dire qu'une droite a pour équation y = ax + b signifie que les points M(x; y) qui sont sur cette droite ont leurs coordonnées qui vérifient l'équation, et réciproquement.

Preuve:

- Une droite non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.
- Une droite parallèle à l'axe des ordonnées, dite « verticale », ne représente aucune fonction, mais tous ses points ont la même abscisse x, l'ordonnée y étant quelconque.

Exercice: 14p192

Propriété 1 Soit A et B deux points distincts du plan, ayant des abscisses distinctes. On sait alors que la droite AB a une équation de la forme y = ax + b. On a :

$$a = \frac{y_B - y_A}{x_B - x_A}$$

Preuve : Comme A et B appartiennent à la droite d'équation y = ax + b, on a

$$y_B =$$

$$y_A =$$

En faisant la soustraction des deux égalités, on obtient :

Puis:

Pour trouver ensuite b, il suffit de remplacer les coordonnées d'un point de la droite dans l'équation, pour obtenir une équation dont la seule inconnue est b.

Exercice: 15p192

Théorème 2 Le vecteur $\overrightarrow{u}(1;a)$ est un vecteur directeur de la droite \mathscr{D} d'équation y=ax+b. Il en est de même de tout vecteur colinéaire à \overrightarrow{u} , donc de coordonnées (k;ak), où $k\neq 0$.

Preuve: On prend A(0;b) et B(1;a+b). Ces deux points sont sur \mathscr{D} car:

Le vecteur \overrightarrow{AB} est un vecteur directeur de \mathscr{D} . Or \overrightarrow{AB} (

Théorème 3 Les droites \mathscr{D} et \mathscr{D}' d'équations respectives y = ax + b et y = a'x + b' sont parallèles si et seulement si a = a'.

Preuve : Les deux droites sont parallèles si et seulement si leurs vecteurs directeurs respectifs $\overrightarrow{u}(1;a)$ et $\overrightarrow{u'}(1;a')$ sont ce qui revient en effet à l'égalité a=a' car :

Exercices: 18,19,17p193

Exercices : 25,24p193