# Chapitre : Probabilités

#### \* Activité: page 144

Faire jeter au moins trente fois (nombre d'expériences à compter) deux dés et compter le nombre de fois où leur somme vaut au moins 8.

## I. Généralités

<u>Définition</u> Une expérience aléatoire est un processus qui peut être répété, dont le résultat n'est pas connu à l'avance, mais dont l'ensemble des résultats possibles est bien déterminé.

l'ensemble de valeurs possibles, appelé **univers**, est parfois noté E. On appelle ses éléments des **issues**.

Exemple on lance un dé. L'univers est l'ensemble {1; 2; 3; 4; 5; 6}.

**Exemple** On lance deux dés et on fait la somme. L'univers est l'ensemble  $\{2; 3; ...; 12\}$ .

<u>Définition</u> On appelle événement tout sous-ensemble de l'univers E. Un **événement élémentaire** est un événement composé d'une seule issue. On peut décrire un événement à l'aide d'une phrase.

**Exemple** Dans l'expérience aléatoire du jet d'un dé, on peut considérer :

- l'événement « obtenir un 2 ». Il correspond à l'ensemble {2}.
- l'événement « obtenir un nombre pair ». Il correspond ) l'ensemble  $A = \{2, 4, 6\}$ .

**<u>Définition</u>** Soit A un événement. L'événement contraire de A, noté  $\overline{A}$ , est l'ensemble des issues de E qui ne sont pas dans A.

**Exemple** L'événement contraire de « obtenir un 2 » est « ne pas obtenir de 2 ». Il correspond à l'ensemble  $\{1; 3; 4; 5; 6\}$ .

L'événement contraire de « obtenir un nombre pair » est « obtenir un nombre impair ». Il correspond à l'ensemble  $\overline{A} = \{1; 3; 5\}$ .

<u>Définition</u> On dit de deux événements qu'ils sont **incompatibles** s'ils n'ont pas d'issue en commun. Deux événements contraires sont donc en particulier incompatibles.

**► Exercices** : 34,35,36p159

## II. Loi de probabilité

Sur l'ensemble  $E = \{e_1; \ldots; e_n\}$ , univers de l'expérience aléatoire, on veut pouvoir exprimer la fréquence d'apparition de chaque issue.

On définit alors sur E une fonction de probabilité, notée P, de sorte que :

Pour tout élément  $e_i$  de E,  $P(e_i) \ge 0$  et la somme des  $P(e_i)$  vaut 1 :

$$P(e_1) + \dots + P(e_n) = 1$$

Déterminer la fonction P, c'est donner la **loi de probabilité** sur E.

**<u>Définition</u>** La probabilité d'un événement A de E est la somme des probabilités des issues de A.

Exemple La somme d'obtenir un nombre pair avec un jet de dé à six faces est :

$$P(\text{``another obtanir un nombre pair ">"}) = P(2) + P(4) + P(6)$$

► Exercices : 1,2p149, 3p150

### 1. Cas particulier : équiprobabilité

Dans certains cas, on estime que les probabilités de toutes les issues sont les mêmes. On dit que les issues sont équiprobables.

C'est le cas lorsque l'on considère le jet d'un « dé équilibré », ou que l'on « tire une carte **au hasard** » (le mot « hasard » dans les problèmes de probabilités signifie en principe qu'il y a équiprobabilité).

Si E contient n éléments, on a alors pour tout  $e_i$  de E la probabilité  $P(e_i) = \frac{1}{n}$ .

On dit que la loi est équirépartie.

 $\underline{\mathbf{Exemple}}$  pour revenir à l'exemple précédent, on peut alors donner la probabilité dans le cas où le  $\underline{\mathrm{d\acute{e}}}$  est équilibré :

$$P(\text{``another obtanir'} un nombre pair ") = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

**Propriété** On peut simplifier le calcul des probabilités dans le cas d'équiprobabilité. Soit A un événement de E dont la loi est équirépartie. Alors :

$$P(A) = \frac{\text{nombre d'éléments de } A}{\text{nombre d'éléments de } E}$$

**Exemple** Dans notre exemple, l'événement « obtenir un nombre pair » représente l'ensemble  $\{2;4;6\}$  qui contient 3 éléments. L'ensemble E contient lui 6 éléments.

On a donc  $P(A) = \frac{3}{6} = \frac{1}{2}$ .

**Propriété** | Soit A un événement de E. Alors :

$$P(A) + P(\overline{A}) = 1$$

 $\blacktriangleright$  Exercices : 4,5,6,7,8p151

 $\blacktriangleright$  Exercices : 10,11,12p153,... (arbres)

## III. Lien entre union et intersection

 $\circledast$  Activité : 2p145 (chercher une formule liant  $A \cup B$  avec A et B entre autres).

**<u>Définition</u>** Soit A et B deux événements. On définit les événements :

- « A et B », noté  $A \cap B$  et prononcé aussi A inter(section) B, l'événement contenant les issues qui sont à la fois dans A et dans B.
- « A ou B », noté  $A \cup B$  et prononcé aussi A union B, l'événement contenant les issues qui sont dans A ou dans B (éventuellement les deux).

Illustration : à l'aide d'un diagramme (dit de Venn), on peut visualiser ces deux événements. Voir le livre page 148

**Propriété** | Quels que soient les événements A et B, on a :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

**Preuve**: Un dessin suffit à comprendre cette formule : en ajoutant P(A) et P(B), on compte deux fois  $P(A \cap P)$ , il faut donc la soustraire une fois.

Dessin

► Exercices : ensemble de la page 155

**► Exercices** : 52,56 et 57p162

**► Exercice** : (DM) 58p163