On souhaite étudier les valeurs de q^n lorsque n prend des grandes valeurs.

- 1. Avec la calculatrice, émettre une conjecture sur le comportement de q^n à l'infini en fonction de la valeur de q.
- 2. Pour q=1,2, déterminer avec la calculatrice le plus petit rang n à partir duquel :

$$1,2^n > 100$$
 $1,2^n > 10^6$ $1,2^n > 10^{50}$

On traduit l'idée que $1,2^n$ peut dépasser définitivement toute valeur donnée aussi grande soitelle en disant que la limite de $1,2^n$ est $+\infty$.

3. On considère l'algorithme suivant :

Saisir q
Saisir A
N prend la valeur 0
Tant que
$$q^N \geqslant A$$
| N prend la valeur $N+1$
FinTantque
Afficher N

- (a) Quel est le rôle de cet algorithme?
- (b) Programmer cet algorithme dans la calculatrice.
- (c) Utiliser l'algorithme pour déterminer le plus petit rang n à partir duquel :

$$0.8^n < 10^{-6} \qquad 0.8^n < 10^{-50}$$

Le nombre 0.8^n étant toujours positif $(0.8^n > 0)$, on dit que la limite de 0.8^n est 0.