Chapitre : Suites

 \sim

I. Variations

<u>Définition</u> Une suite u est croissante si, quelque soit n entier naturel, $u_{n+1} \ge u_n$. Une suite u est décroissante si, quelque soit n entier naturel, $u_{n+1} \le u_n$. Une suite u est constante si, quelque soit n entier naturel, $u_{n+1} = u_n$.

Remarque Certaines suites ne sont ni croissantes, ni décroissantes, ni constantes (exemple).

<u>Méthode</u> Pour déterminer les variations d'une suite, il suffit de simplifier et d'étudier le signe de l'expression $u_{n+1} - u_n$. Par exemple, si celle-ci est toujours positive alors $u_{n+1} \geqslant u_n$, donc u est croissante.

Dans le cas où $u_n = f(n)$, si f est (dé)croissante alors u est (dé)croissante

Exemple $u_n = 5n + 4$ par les deux méthodes.

En particulier:

Propriété | (Suites arithmétiques) Soit u une suite arithmétique de raison a.

- Si a < 0, alors u est décroissante.
- Si a > 0, alors u est croissante.
- **► Exercice** : 1,4p127

Propriété | (Suites géométriques) Soit u une suite géométrique positive ($u_0 > 0$) de raison (positive) b.

- Si 0 < b < 1, alors u est décroissante.
- Si b > 1, alors u est croissante.
- Si b = 1, alors u est croissante.

Preuve: On exprime $u_{n+1} - u_n$, en sachant que $u_{n+1} = b \times u_n$:

$$u_{n+1} - u_n = b \times u_n - u_n = (b-1)u_n = (b-1)b^n u_0$$

Puisque b et u_0 sont positifs, alors $b^n u_0 > 0$ et c'est b-1 qui donne le signe de $u_{n+1} - u_n$. On conclut tous les cas donnés dans la propriété.

► Exercice : 23p129

II. Limites de suites géométriques

* Activité: 5p101

Propriété | Soit u une suite géométrique de raison b et de premier terme u_0 positifs.

- Si 0 < b < 1, alors $\lim_{n \to +\infty} b^n = 0$ et $\lim_{n \to +\infty} u_n = 0$.
- Si b > 1, alors $\lim_{n \to +\infty} b^n = +\infty$ et $\lim_{n \to +\infty} u_n = +\infty$.

Exemple $u_n = 3 \times 1, 1^n \text{ et } u_n = 3 \times 0, 9^n$

On peut déterminer de même la limite des sommes de termes successifs d'une suite géométrique dans certains cas:

On rappelle que $S_n = 1 + b + b^2 + \dots + b^n = \frac{b^{n+1} - 1}{b - 1}$. Ainsi, si 0 < b < 1 alors $\lim_{n \to +\infty} S_n = \frac{-1}{b - 1} = \frac{1}{1 - b}$.

► Exercices : 25p129, 40p134