Lecture méthodologique d'exercices

 \sim

Pour chaque exercice de type bac suivant :

- lire au préalable l'ensemble des questions avant de commencer à écrire quoi que ce soit;
- Pour chaque question:
 - * indiquer les méthodes à appliquer (sans les appliquer), ou le début du raisonnement;
 - \star estimer, si possible et si cela est pertinent, la réponse à obtenir.

Une fois ainsi traité l'ensemble des exercices, on pourra les résoudre en détail.

Exercice 1 On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n}$$

- 1. (a) Calculer u_1 et u_2 .
 - (b) Démontrer, par récurrence, que pour tout entier naturel $n, 0 < u_n$.
- 2. On admet que pour tout entier naturel $n, u_n < 1$.
 - (a) Démontrer que la suite (u_n) est croissante.
 - (b) Démontrer que la suite (u_n) converge.
- 3. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - (a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - (b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - (c) En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.
 - (d) Déterminer la limite de la suite (u_n) .

Exercice 2 On considère la suite (z_n) à termes complexes définie par $z_0 = 1 + i$ et, pour tout entier naturel n, par

$$z_{n+1} = \frac{z_n + |z_n|}{3}.$$

Pour tout entier naturel n, on pose : $z_n = a_n + \mathrm{i} b_n$, où a_n est la partie réelle de z_n et b_n est la partie imaginaire de z_n .

Le but de cet exercice est d'étudier la convergence des suites (a_n) et (b_n) .

Partie A

- 1. Donner a_0 et b_0 .
- 2. Calculer z_1 , puis en déduire que $a_1 = \frac{1+\sqrt{2}}{3}$ et $b_1 = \frac{1}{3}$.
- 3. On considère l'algorithme suivant :

Variables : A et B des nombres réels

K et N des nombres entiers

Initialisation : Affecter à A la valeur 1

Affecter à B la valeur 1

Traitement:

Entrer la valeur de N

Pour K variant de 1 à N

Affecter à A la valeur $\frac{A+\sqrt{A^2+B^2}}{3}$ Affecter à B la valeur $\frac{B}{3}$

FinPour

Afficher A

(a) On exécute cet algorithme en saisissant N=2. Recopier et compléter le tableau ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme (on arrondira les valeurs calculées à 10^{-4} près).

K	A	В
1		
2		

(b) Pour un nombre N donné, à quoi correspond la valeur affichée par l'algorithme par rapport à la situation étudiée dans cet exercice?

Partie B

- 1. Pour tout entier naturel n, exprimer z_{n+1} en fonction de a_n et b_n . En déduire l'expression de a_{n+1} en fonction de a_n et b_n , et l'expression de b_{n+1} en fonction de a_n et b_n .
- 2. Quelle est la nature de la suite (b_n) ? En déduire l'expression de b_n en fonction de n, et déterminer la limite de (b_n) .
- 3. (a) On rappelle que pour tous nombres complexes z et z':

$$|z+z'|\leqslant |z|+|z'| \qquad \text{(inégalité triangulaire)}.$$

Montrer que pour tout entier naturel n,

$$|z_{n+1}| \leqslant \frac{2|z_n|}{3}.$$

(b) Pour tout entier naturel n, on pose $u_n = |z_n|$. Montrer par récurrence que, pour tout entier naturel n,

$$u_n \leqslant \left(\frac{2}{3}\right)^n \sqrt{2}.$$

En déduire que la suite (u_n) converge vers une limite que l'on déterminera.

(c) Montrer que, pour tout entier naturel $n, |a_n| \leq u_n$. En déduire que la suite (a_n) converge vers une limite que l'on déterminera.