Devoir maison n°04 – mathématiques Donné le 02/10/2013 – à rendre le 09/10/2013

On traitera au choix l'un des deux exercices suivants :

Exercice 1

1. Soit n un entier naturel supérieur ou égal à 1. Démontrer que la propriété suivante est héréditaire :

$$\sum_{k=2}^{n+1} \frac{1}{10^k} = \frac{1}{90} \left(1 - \frac{1}{10^n} \right)$$

On admet pour la suite que cette égalité est vraie pour tout $n \ge 1$.

2. Soit v la suite définie par : $\begin{cases} v_0 &= 1,2 \\ v_{n+1} &= v_n + \frac{7}{10^{n+2}} \end{cases} .$

Ainsi, $v_1 = 1,27$, $v_2 = 1,277$, et plus généralement :

 $v_n = 1,2777...7$ avec n décimales consécutives égales à 7 (notation incorrecte!).

On admet que $\lim_{n\to+\infty} 10^n = +\infty$.

En utilisant la question précédente, démontrer que la suite v converge et donner sa limite.

Toute affirmation devra être rigoureusement démontrée.

On pourra en particulier démontrer que $v_n = 1,2+7 \times \sum_{k=2}^{n+1} \frac{1}{10^k}$.

Exercice 2 Les deux parties de cet exercice sont indépendantes.

Partie 1 Soit X une variable aléatoire qui suit la loi binomiale de paramètres n = 10 et p = 0.8. Les résultats seront donnés à 10^{-4} près.

- 1. Calculer la probabilité des événements $A: \ll X \geqslant 4$ » et $B: \ll X < 8$ ».
- 2. Décrire l'événement $A \cap B$ et en calculer la probabilité.
- 3. Calculer $\mathbb{P}_B(A)$ et $\mathbb{P}_A(B)$.

Partie 2 - Restitution organisée des connaissances (ROC)

Soit A et B deux événements.

- 1. Jutifier que $\mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A) \mathbb{P}(A \cap B)$
- 2. On suppose maintenant que A et B sont indépendants.
 - (a) En utilisant l'égalité de la question 1, démontrer que A et \overline{B} sont indépendants.
 - (b) On suppose de plus que $\mathbb{P}(A) = 0.4$ et $\mathbb{P}(B) = 0.3$. Calculer $\mathbb{P}(A \cap \overline{B})$ puis $\mathbb{P}(\overline{A} \cup B)$.