Devoir maison n°10 – mathématiques Donné le 14/01/2014 – à rendre le 21/01/2014

Exercice 1

Pour tout réel k strictement positif, on désigne par f_k la fonction définie et dérivable sur l'ensemble des nombres réels \mathbb{R} telle que :

$$f_k(x) = kxe^{-kx}$$

On note C_k sa courbe représentative dans le plan muni d'un repère orthogonal $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1. On considère tout d'abord la fonction f_1 .
 - (a) Donner l'expression $f_1(x)$.
 - (b) Déterminer les limites de la fonction f_1 en $-\infty$ et en $+\infty$.
 - (c) En déduire que la courbe C_1 admet une asymptote que l'on précisera.
 - (d) Étudier les variations de f_1 sur \mathbb{R} puis dresser son tableau de variation sur \mathbb{R} .
 - (e) Soit $g_1: x \mapsto -(x+1)e^{-x}$.
 - i. Démontrer que g a pour dérivée f_1 .
 - ii. Étudier le signe de $f_1(x)$ suivant les valeurs du nombre réel x.
 - iii. Que peut-on en déduire sur la fonction q?
- 2. On considère maintenant l'ensemble des fonctions f_k , avec k > 0.
 - (a) Montrer que pour tout réel k strictement positif, les courbes C_k passent par un même point.
 - (b) Montrer que pour tout réel k strictement positif et tout réel x on a

$$f'_k(x) = k(1 - kx)e^{-kx}$$
.

- (c) Justifier que, pour tout réel k strictement positif, f_k admet un maximum et calculer ce maximum.
- (d) Écrire une équation de la tangente à C_k au point O origine du repère.