Devoir surveillé n°04 – mathématiques 10/12/2013

Exercice 1 (16 points)

Soit u la suite définie pour tout entier naturel n non nul par $\begin{cases} u_1 &= \frac{1}{2} \\ u_{n+1} &= \frac{n+1}{2n} u_n \end{cases}.$

- 1. (a) Démontrer (par récurrence) que, pour tout entier naturel n non nul, $u_n > 0$.
 - (b) Démontrer que la suite u est décroissante.
 - (c) Que peut-on en déduire pour la suite u?
- 2. Pour tout entier naturel n non nul, on pose : $v_n = \frac{u_n}{n}$.
 - (a) Démontrer que la suite v est géométrique. On précisera sa raison et son premier terme v_1 .
 - (b) En déduire que, pour tout entier naturel n non nul, $u_n = \frac{n}{2^n}$.
- 3. On admet que pour tout $n \ge 1$, $n \le \left(\frac{3}{2}\right)^n$. En déduire la limite de la suite u.
- 4. On considère l'algorithme suivant :

Variables: $U, I, A \ (A \ strictement \ positif)$ Traitement: $Saisir \ A$ $I \ prend \ la \ valeur \ 1$ $U \ prend \ la \ valeur \ 1/2$ $Tant \ que \ U > A \ Faire$ $| \ U \ prend \ la \ valeur \ ___ | I \ prend \ la \ valeur \ I + 1$ FinTantSortie: $Afficher \ I$

- (a) Donner l'expression à écrire à la place de $_____$ pour que la variable U prenne comme valeurs celles de la suite u.
- (b) Que fait l'algorithme? La réponse devra être précise, sans paraphraser l'algorithme.

Exercice 2 (4 points)

Soit f la fonction définie sur I = [2; 6] par f(x) = -x + 6.

- 1. Justifier que f est positive sur I.
- 2. Faire une représentation graphique de f dans un repère orthonormé.
- 3. Donner l'interprétation graphique de l'intégrale $J = \int_2^4 f(t)dt$ puis la représenter.
- 4. Calculer la valeur de J.