Devoir surveillé n°05 – mathématiques 14/01/2014

Exercice 1 (7 points)

- 1. Soit Z une variable aléatoire qui suit la loi normale centrée réduite $\mathcal{N}(0;1)$. Dans les questions suivantes, les résultats numériques seront donnés arrondis à 10^{-4} près.
 - (a) Calculer les probabilités suivantes, en expliquant la méthode :

$$\mathbb{P}(Z \geqslant 1)$$
 et $\mathbb{P}(Z \leqslant 0.5)$

(b) Résoudre les équations suivantes, d'inconnues respectives α et β :

$$\mathbb{P}(Z \geqslant \alpha) = 0.68$$
 et $\mathbb{P}(-\beta \leqslant Z \leqslant \beta) = 0.99$

2. On note X une variable aléatoire qui suit une loi continue d'espérance $m_2 = 0.17$ et d'écart-type inconnu σ_2 . On suppose de plus que $\mathbb{P}(0.16 \leq X \leq 0.18) = 0.99$.

Soit Z la variable aléatoire définie par $Z = \frac{X - m_2}{\sigma_2}$.

On suppose que la variable Z suit la loi normale $\mathcal{N}(0;1)$.

- (a) Déterminer, en fonction de σ_2 , l'intervalle auquel appartient Z lorsque X appartient à l'intervalle $[0,16\ ;\ 0,18]$.
- (b) En déduire une valeur approchée à 10^{-3} près de σ_2 . On pourra utiliser pour cela le tableau donné ci-contre, dans lequel la variable aléatoire Z suit la loi normale $\mathcal{N}(0;1)$.

β	$P(-\beta \leqslant Z \leqslant \beta)$
2,483 8	0,987
2,512 1	0,988
2,542 7	0,989
2,575 8	0,990
2,612 1	0,991
2,652 1	0,992

Exercice 2 (4 points)

La variable aléatoire U suit la loi uniforme sur [3; 12].

Les réponses numériques aux questions suivantes seront données sous forme de fractions simplifiées.

- 1. Déterminer la probabilité que U appartienne à l'intervalle [7; 10].
- 2. Si l'on sait que U appartient à l'intervalle [5, 10], quelle est la probabilité d'avoir $U \ge 7$?

Exercice 3 (9 points)

On considère la fonction f définie sur $I =]3; +\infty[$ par $f(x) = \frac{2x+7}{3-x}$.

- 1. Déterminer la limite à droite de f en 3, soit $\lim_{\substack{x \to 3 \\ x > 3}} f(x)$.
- 2. (a) Déterminer la limite de f quand x tend vers $+\infty$, soit $\lim_{x\to +\infty} f(x)$.
 - (b) Exprimer f(x) + 2 en fonction de x, puis en étudier le signe en fonction de $x \in I$.
 - (c) En déduire la position relative de la courbe représentative de f par rapport à la droite d'équation y = -2.
- 3. Calculer la dérivée f' de f.
- 4. Déterminer alors les variations de f sur I, et les résumer dans un tableau en y ajoutant les limites déterminées précédemment.