Chapitre : Lois à densité

 \sim

* Activité: Fiche Éco-point.

I. Variables continues

<u>Définition</u> Soit X une variable aléatoire. Si X prend comme valeurs tous les nombres d'un intervalle I de \mathbb{R} , on dit que X est **continue**.

Dans ce cas, la probabilité d'obtenir n'importe quelle valeur précise donnée à l'avance est nulle. Ce qui correspond à la donnée de la loi de probabilité pour une variable continue est la **densité**.

<u>Définition</u> Une fonction f définie sur \mathbb{R} est appelée fonction densité si :

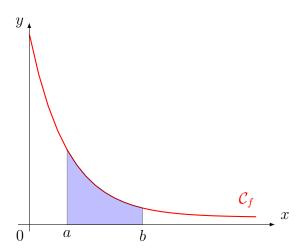
- f est positive sur \mathbb{R} : quelque soit x réel, $f(x) \ge 0$;
- f est continue sur \mathbb{R} sauf éventuellement en un nombre fini de valeurs (il peut y avoir un nombre fini de sauts);
- L'aire située entre l'axe des abscisses et la courbe représentative de f dans un repère orthogonal est égale à 1 u.a.

Le troisième point revient à dire que la somme totale des probabilités vaut 1.

<u>Définition</u> Soit X une variable aléatoire continue ayant pour densité la fonction f. Soit a et b deux réels (a < b). Alors la probabilité que X prenne des valeurs comprises entre a et b est :

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f(t)dt$$

Autrement dit il s'agit de l'aire délimitée par l'axe des abscisses, la courbe représentative de f et les droites d'équations x = a et x = b.



Propriété Soit k un réel quelconque et X une variable aléatoire continue. Alors P(X = k) = 0. Par conséquent, $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$. Autrement dit, on ne change pas la probabilité en ajoutant les bornes de l'intervalle [a;b] ou non.

Propriété | Soit X une variable aléatoire continue. Soit a et b des réels. Alors :

• $\mathbb{P}(a < X < b) = \mathbb{P}(X < b) - \mathbb{P}(X \leqslant a)$

► Exercices : 1,2,4,5p334

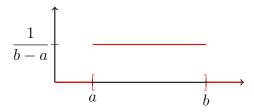
▶ Exercices: 37p336 (fonction affine) (sauf E(X))

II. Loi uniforme

<u>Définition</u> Soit a et b deux nombres réels tels que a < b. Une variable aléatoire X suit la loi uniforme sur [a;b] si elle a pour densité la fonction f définie par :

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \leq x \leq b \\ 0 & \text{sinon} \end{cases}$$

La variable X prend toutes les valeurs possibles dans l'intervalle [a;b], et ce de manière uniforme.

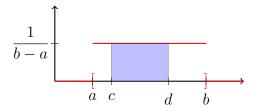


Propriété Si X suit la loi uniforme sur [a;b] et si c et d sont deux nombres de [a;b] tels que c < d, alors

$$P(c \leqslant X \leqslant d) = \frac{d-c}{b-a}$$

soit le rapport entre l'amplitude de [c;d] et celle de [a;b].

Illustration:



► Exercices : 6,8p334

► Exercices : 48,49,53p337

► Exercice : 55p337

III. Loi normale $\mathcal{N}(0;1)$

* Activité: (Salle avec vidéoprojecteur) Introduction: rappels graphiques sur la loi uniforme. Le mot « aléatoire » ne signifie pas toujours « uniformément réparti ».

Exemple des tailles. Observation de la cloche. Observation de la loi binomiale, centrée réduite. Introduction de la fonction de densité de la loi normale centrée réduite.

Théorème (de Moivre Laplace)

Soit $p \in]0;1[$. On suppose que pour tout entier naturel n non nul, la variable aléatoire X_n suit une loi binomiale de paramètres n et p.

Soit Z_n la variable aléatoire définie par $Z_n = \frac{X_n - np}{\sqrt{np(1-p)}}$.

Alors, quelque soit les réels a et b tels que a < b,

$$\lim_{n \to +\infty} \mathbb{P}(a \leqslant Z_n \leqslant b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

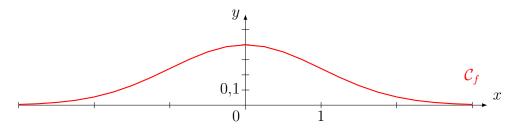
Définition Une variable aléatoire X suit la loi normale centrée réduite si elle admet pour densité la fonction:

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

On note $\mathcal{N}(0;1)$ la loi normale centrée réduite.

Remarque Il n'y a pas d'expression de la primitive de f à l'aide de fonctions usuelles. Par conséquent, aucune expression de la fonction de répartition ne peut être donnée.

Remarque La fonction f est paire, c'est à dire que la courbe admet l'axe des ordonnées pour axe de symétrie.



Représentation de la fonction f

Méthode Utilisation de la calculatrice : voir page 328.

Des règles de calcul de probabilités peuvent se trouver en utilisant la symétrie de la courbe de f. Voir page 330

► Exercices: 17,18,19,20p335 (calculer la probabilité)

 \triangleright Exercices: 23,24,26p335 (chercher a)

► Exercices : 73,74p339

► Exercice: 75p339 (utilisation d'un graphique)

► Exercices : (supplément)

(loi continue) 27p335 ($\mathbb{P}(-a < X < a) = k$) (Loi uniforme) 9p334 (sauf 2.) 54p337 puis 50p337 (algo) (Loi continue) 73 et 78p339

IV. Loi exponentielle

* Activité: 3p323 : durée de vie sans vieillissement avec une loi discrète.

<u>Définition</u> Soit λ un réel strictement positif.

Une variable aléatoire T suit la loi exponentielle de paramètre λ si sa densité de probabilité est la fonction f définie sur $[0; +\infty[$ par $f(x) = \lambda e^{-\lambda x}$.

Propriété Si T suit la loi exponentielle de paramètre λ , alors pour tous réels a et b tels que $0 \le a \le b$, $\mathbb{P}(a \le T \le b) = e^{-\lambda a} - e^{-\lambda b}$. Par suite,

$$\mathbb{P}(T \leqslant b) = 1 - e^{-\lambda b}$$
 et $\mathbb{P}(T > a) = e^{-\lambda a}$

Démonstration: Après avoir vu les primitives.

La fonction $F: x \mapsto -e^{-\lambda x}$ est une primitive de f sur $[0; +\infty[$.

Donc $\mathbb{P}(a \leqslant T \leqslant b) = \int_a^b f(t)dt = F(b) - F(a) = -e^{-\lambda b} - (-e^{-\lambda a}) = e^{-\lambda a} - e^{-\lambda b}$. Par suite,

$$\mathbb{P}(T \leqslant b) = \mathbb{P}(0 \leqslant T \leqslant b) = e^{-\lambda 0} - e^{-\lambda b} = 1 - e^{-\lambda b}$$

puis

$$\mathbb{P}(T > a) = 1 - \mathbb{P}(T \leqslant a) = 1 - \left(1 - e^{-\lambda a}\right) = e^{-\lambda a}$$

<u>Propriété</u> (Durée de vie sans vieillissement) Si T est une variable aléatoire suivant une loi exponentielle, alors pour tous réels positifs t et h,

$$\mathbb{P}_{T \geqslant t}(T \geqslant t + h) = \mathbb{P}(T \geqslant h)$$

Démonstration : On exprime :

$$\mathbb{P}_{T \geqslant t}(T \geqslant t + h) = \frac{\mathbb{P}(T \geqslant t \text{ et } T \geqslant t + h)}{\mathbb{P}(T \geqslant t)} \\
= \frac{\mathbb{P}(T \geqslant t + h)}{\mathbb{P}(T \geqslant t)} \\
= \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}} \\
= \frac{e^{-\lambda t} \times e^{-\lambda h}}{e^{-\lambda t}} \\
= e^{-\lambda h} \\
= \mathbb{P}(T \geqslant h)$$

► Exercices : 10,12,13p334

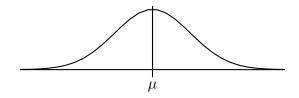
► Exercices : 61p337, 62,64p338

V. Loi normale $\mathcal{N}(\mu; \sigma^2)$

<u>Définition</u> Une variable aléatoire X suit la loi normale centrée réduite de moyenne μ et d'écart-type σ si la variable aléatoire $\frac{X-\mu}{\sigma}$ suit la loi normale centrée réduite.

On note $\mathcal{N}(\mu; \sigma^2)$ la loi normale de moyenne μ et d'écart-type σ .

La courbe de la fonction de densité pour une telle variable est symétrique par rapport à la droite d'équation $x = \mu$.



l'écart-type σ donne une indication des écarts des valeurs prises à la moyenne. Plus σ est grande, plus les écarts peuvent être importants. Ainsi, la courbe de f « s'élargit », tout en s'écrasant vers l'axe des abscisses (l'aire sous la courbe vaut toujours 1!).

Propriété | Soit X une variable aléatoire qui suit la loi $\mathcal{N}(\mu; \sigma^2)$. Alors :

$$P(\mu - \sigma \leqslant X \leqslant \mu + \sigma) \simeq 0.683$$

$$P(\mu - 2\sigma \leqslant X \leqslant \mu + 2\sigma) \simeq 0.954$$

$$P(\mu - 3\sigma \leqslant X \leqslant \mu + 3\sigma) \simeq 0.997$$

Démonstration : On se ramène à la loi normale centrée réduite $\mathcal{N}(0;1)$.

<u>Remarque</u> Par symétrie de la courbe de la densité, on a : $P(X \le \mu) = \frac{1}{2}$.

Méthode (Calculer une probabilité avec la calculatrice)

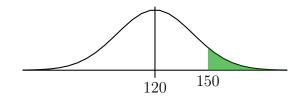
Soit X une variable aléatoire suivant la loi $\mathcal{N}(120; 10^2)$. On veut déterminer $\mathbb{P}(X > 150)$. Il faut se ramener à une probabilité de la forme $P(a \leq X \leq b)$.

Ici, on a : $P(X > 150) = \frac{1}{2} - P(120 \le X \le 150)$.

La calculatrice donne $P(120 \le X \le 150)$

(voir page 332). On obtient :

 $P(X > 150) \simeq 0.5 - 0.49865 \simeq 0.00135$. Ce qui est très faible (c'est normal : on dépasse $\mu + 3\sigma$!).



► Exercices: 87,89,90,92p340

▶ Exercices : 34p335 (chercher k), 36p335 (retour à $\mathcal{N}(0;1)$)

► **Exercice** : (en DM?) 95p341

VI. Espérence

Rappel L'espérance d'une variable aléatoire X prenant un nombre fini de valeurs est donnée par :

$$E(X) = \sum_{i=1}^{n} x_i \times P(X = x_i)$$

Soit la somme des produits des valeurs prises par leur probabilité d'être obtenues.

<u>Définition</u> De manière similaire, pour une variable aléatoire X prenant ses valeurs dans un intervalle [a;b], et de densité f, son espérence est définie par :

$$E(X) = \int_{a}^{b} t \times f(t)dt$$

Propriété | (Loi normale) Soit X une variable aléatoire qui suit une loi normale $\mathcal{N}(\mu; \sigma^2)$. Alors $\overline{E(X)} = \mu$ (l'écart-type est égal à σ).

Démonstration: Admis

► Exercices : 86,91p340

Propriété | (Loi uniforme) Si X suit la loi uniforme sur [a; b], alors

$$E(X) = \frac{a+b}{2}$$

Autrement dit, si l'on choisit un grand nombre de valeurs données aléatoirement et uniformément dans un intervalle [a; b], alors la moyenne de ces valeurs sera proche de la valeur centrage de l'intervalle [a; b].

► Exercice : 52p337

<u>Propriété</u>] (loi exponentielle) L'espérance mathématique d'une variable aléatoire T qui suit une loi exponentielle de paramètre λ est définie par :

$$E(T) = \lim_{b \to +\infty} \int_0^b x f(x) dx = \frac{1}{\lambda}$$

Démonstration (exigible): On cherche une primitive G de $g: x \mapsto xf(x)$. On a $g(x) = \lambda xe^{-\lambda x}$. On cherche alors G de la forme $(ax + b)e^{-\lambda x}$, avec a et b réels à déterminer.

G est de la forme uv avec u(x) = ax + b et $v(x) = e^{-\lambda x}$.

On a alors u'(x) = a et $v'(x) = -\lambda e^{-\lambda x}$ (forme e^w de dérivée $w'e^w$).

Par suite, G' = (uv)' = u'v' + uv', donc $G'(x) = ae^{-\lambda x} - \lambda(ax+b)e^{-\lambda x} = (-\lambda ax + (a-\lambda b))e^{-\lambda x}$.

Or G' = g, donc par identification, $-\lambda a = \lambda$ et $a - \lambda b = 0$.

Autrement dit, a=-1, puis $b=-\frac{1}{\lambda}$. Ainsi, $G(x)=\left(-x-\frac{1}{\lambda}\right)e^{-\lambda x}$. Par suite,

$$\int_0^b x f(x) dx = G(b) - G(0) = \left(-b - \frac{1}{\lambda}\right) e^{-\lambda b} - \left(-0 - \frac{1}{\lambda}\right) e^{-\lambda 0} = \left(-b - \frac{1}{\lambda}\right) e^{-\lambda b} + \frac{1}{\lambda}$$

Or
$$\lim_{b \to +\infty} \left(-b - \frac{1}{\lambda} \right) e^{-\lambda b} = 0$$
. En effet,

$$\left(-b - \frac{1}{\lambda}\right)e^{-\lambda b} = -be^{-\lambda b} - \frac{e^{-\lambda b}}{\lambda} = \frac{1}{\lambda}\left(-\lambda be^{-\lambda b} - e^{-\lambda b}\right)$$

Comme $\lim_{b\to +\infty} -\lambda b = -\infty$, $\lim_{X\to -\infty} Xe^X = 0$ et $\lim_{X\to -\infty} e^X = 0$ on obtient bien la limite annoncée.

Finalement,
$$E(T) = \lim_{b \to +\infty} \int_0^b x f(x) dx = \frac{1}{\lambda}$$
.

► Exercices : 15p334, 63,66,67p338