Logarithme

 \sim

Exercice 1

Soit f la fonction définie sur $]0; +\infty[$ par $: f(x) = \frac{1 + \ln x}{x^2}.$

- 1. Calculer f'(x) et en déduire les variations de la fonction f sur $]0; +\infty[$.
- 2. Étudier les limites de f en 0 et en $+\infty$. En déduire les asymptotes à la courbe représentative de f.

Exercice 2

Faire l'exercice 62p147

Nombres complexes

Rappel L'argument d'un nombre complexe est unique à 2π près.

 $\overline{\text{Ainsi, deux}}$ arguments θ_1 et θ_2 sont ceux d'un même nombre complexe si et seulement si $\theta_2 - \theta_1$ est un multiple entier de 2π .

Exercice 3

Dans chaque cas, les deux nombres donnés peuvent-ils être arguments d'un même nombre complexe?

- 1. $\frac{17\pi}{4}$ et $\frac{\pi}{4}$.
- 2. $-\frac{55\pi}{3}$ et $\frac{\pi}{3}$.
- 3. $\frac{155\pi}{6}$ et $-\frac{\pi}{6}$.

Exercice 4

Dans chacun des cas suivants, déterminer graphiquement (et non algébriquement) l'ensemble des points M(z) qui vérifient la condition imposée (revoir les exercices vus en cours sur le module).

- 1. |z-2|=5
- 2. |z 1 i| = 9
- 3. |z+i| = |z+5-2i|