Devoir surveillé n° 7 – mathématiques Correction

Exercice 1

- 1. Pour une question précise, la probabilité que la réponse de l'élève soit exacte est $\frac{1}{4}$ puisqu'il y a quatre réponses proposées dont une seule est exacte et l'élève répond au hasard, donc la loi est équirépartie.
- 2. On considère l'épreuve de Bernoulli qui consiste pour l'élève à répondre à une question du QCM. L'événement succès est le fait que la réponse soit exacte. La probabilité de succès est alors $p=\frac{1}{4}$. L'expérience est répétée n=5 fois de manière indépendante et on s'intéresse au nombre X de succès, on obtient donc un shéma de Bernoulli et X suit la loi binomiale de paramètres n=5 et $p=\frac{1}{4}: X \sim \mathcal{B}(5;0,25)$.
- 3. D'après le cours, $E(X) = n \times p = 5 \times \frac{1}{4} = 1,25$. Cela signifie qu'en moyenne, un élève qui répond au hasard à ce questionnaire aura 1,25 réponses justes.
- 4. On veut $\mathbb{P}(X=2) = \binom{n}{2} p^2 (1-p)^{n-2} = \binom{5}{2} 0.25^2 \times 0.75^3 \simeq 0.264.$
- 5. On veut $\mathbb{P}(X \ge 4) = 1 \mathbb{P}(X \le 3) \simeq 0.016$.

Exercice 2

- 1. On a $C_1 = C_0 \times \left(1 + \frac{2,7}{1}00\right) = C_0 \times 1,027 = 10\ 000 \times 1,027 = 10\ 270$. Par suite, $C_2 = C_1 \times 1,027 = 10\ 547,29$.
- 2. On a, pour tout $n \ge 1$, $C_{n+1} = C_n \times 1{,}027$.
- 3. Puisque l'on passe d'un terme à l'autre en multipliant toujours par la même constante 1,027, la suite est géométrique de raison q = 1,027. D'autre part, le premier terme est $C_0 = 10~000$.
- 4. D'après le cours, on a $C_n = C_0 \times q^n = 10\ 000 \times 1{,}027^n$.
- 5. Au bout de 10 ans, le capital est alors $C_{10} = 10~000 \times 1,027^{10} \simeq 13~052,82 \in$.

Exercice 3

On considère la suite u définie par : $u_1 = 6$ et pour tout $n \ge 1$, $u_{n+1} = \frac{1}{2}u_n + 1$.

- 1. On a $u_2 = \frac{1}{2} \times u_1 + 1 = \frac{1}{2} \times 6 + 1 = 3 + 1 = 4$ et $u_3 = \frac{1}{2} \times u_2 + 1 = \frac{1}{2} \times 4 + 1 = 2 + 1 = 3$.
- 2. On calcule $u_2 u_1 = 4 6 = -2$ et $u_3 u_2 = 3 4 = -1 \neq -2$ donc u n'est pas arithmétique.
- 3. On définit la suite v, pour tout $n \ge 1$ par $v_n = u_n 2$.
 - (a) On a $v_1 = u_1 2 = 6 2 = 4$
 - (b) On exprime : $\frac{v_{n+1}}{v_n} = \frac{u_{n+1} 2}{u_n 2} = \frac{\frac{1}{2} \times u_n + 1 2}{u_n 2} = \frac{\frac{1}{2} \times u_n 1}{u_n 2} = \frac{\frac{1}{2} (u_n 2)}{u_n 2} = \frac{1}{2}$. On obtient bien $\frac{1}{2}$ qui est constante, donc v est géométrique de raison $q = \frac{1}{2}$.
 - (c) Puisque la raison q vérifie 0 < q < 1, on en déduit que la suite v est décroissante.