
## Fonctions (suite)

 $\sim$ 

## Exercice 4

On considère la fonction f dont la représentation graphique  $\mathcal{C}_f$  est la suivante :



- 1. En faisant apparaître les traits de construction, utiliser le graphique pour :
  - (a) Donner les images de 0, de 2 et de -1.
  - (b) Donner les antécédents éventuels de -7 et -4.
  - (c) Résoudre l'équation f(x) = 6.
- 2. On donne maintenant l'expression de la fonction :  $f(x) = x^2 + x 6$ .
  - (a) Vérifier par calcul que les résultats des questions précédentes obtenus graphiquement sont corrects.
  - (b) i. Démontrer que f(x) = (x-2)(x+3).
    - ii. Résoudre alors par calcul l'équation f(x) = 0
  - (c) i. Démontrer que  $f(x) = \left(x + \frac{1}{2}\right)^2 6 \frac{1}{4}$ .
    - ii. Justifier alors que quelque soit  $x \in \mathbb{R}, f(x) \geqslant -\frac{25}{4}$ .

## Exercice 5

1. Tracer, dans un même repère, les droites représentant les fonctions affines f,g et h suivantes :

$$f(x) = x$$
  $g(x) = 8$   $h(x) = \frac{1}{2}x + 3$ 

- 2. (a) Calculer l'image de 4 par la fonction h.
  - (b) Calculer le nombre qui a pour image 12 par la fonction h.
  - (c) Résoudre l'équation h(x) = g(x):
    - i. tout d'abord graphiquement;
    - ii. Ensuite par calcul.
- 3. À l'aide du graphique, chercher un nombre x tel que h(x) < g(x) < f(x). Vérifier par calcul.

## Exercice 6

Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = 4x^2 - 4x + 1$ .

- 1. Démontrer que  $f(x) = (2x 1)^2$ .
- 2. En utilisant la question précédente, déterminer les antécédents éventuels de 9 par f.