Contrôle nº1-3 – mathématiques

Exercice 1 (5 points) On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{5(x+1)}{x^2+x+1}$. On admet que le tableau de variations de f est le suivant :

x	$-\infty$	-2	0	$+\infty$
variations de f		$\frac{-5}{3}$	5	

1. Démontrer qu'il existe une unique solution de l'équation f(x) = 2 sur [-2; 0].

2. Donner un encadrement à 10^{-2} près de cette solution.

LYCÉE ALFRED KASTLER

 ${\rm TS}\atop{\rm 2015-2016}$

$Contrôle\ n^o 1\hbox{--} 3-math\'ematiques$

Exercice 1 (5 points) On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{5(x+1)}{x^2+x+1}$. On admet que le tableau de variations de f est le suivant :

x	$-\infty$	-2	0	$+\infty$
variations de f		$\frac{-5}{3}$	5	

1. Démontrer qu'il existe une unique solution de l'équation f(x) = 2 sur [-2; 0].

2. Donner un encadrement à 10^{-2} près de cette solution.