Devoir surveillé n°4 – mathématiques Correction

1. (a) À l'aide d'une calculatrice, on obtient les valeurs suivantes :

1							6		
u_n	2	3,4	2,18	1,19	0,61	0,31	0,16	0,08	0,04

- (b) Au vu du tableau précédent, on peut conjecturer que la suite (u_n) est décroissante à partir du rang 1.
- 2. (a) Soit $\mathcal{P}(n)$ la propriété : « $u_n \geqslant \frac{15}{4} \times 0,5^n$ ». Montrons par récurrence que $\mathcal{P}(n)$ est vraie pour tout entier naturel n non nul.

Initialisation. On a $u_1 = 3.4$ et $\frac{15}{4} \times 0.5 = 1.875$, donc $\mathcal{P}(1)$ est vraie.

Hérédité. Supposons que, pour un certain entier naturel k non nul, la propriété $\mathcal{P}(k)$ est vraie, c'est-à-dire que :

$$u_k \geqslant \frac{15}{4} \times 0.5^k \tag{HR}$$

on doit démontrer que la propriété $\mathcal{P}(k+1)$ est vraie, soit que $u_{k+1} \geqslant \frac{15}{4} \times 0,5^{k+1}$. D'après (HR):

$$\begin{array}{rcl} u_k & \geqslant & \frac{15}{4} \times 0,5^k & \text{donc, en multipliant par } \frac{1}{5}: \\ & \frac{1}{5} u_k & \geqslant & \frac{3}{4} \times 0,5^k & \text{puis, en ajoutant membre à membre } 3 \times 0,5^k: \\ & \frac{1}{5} u_k + 3 \times 0,5^k & \geqslant & \frac{3}{4} \times 0,5^k + 3 \times 0,5^k & \text{c'est-à-dire:} \\ & u_{k+1} & \geqslant & \frac{15}{4} \times 0,5^k & \end{array}$$

Or, pour tout entier naturel k, $0.5^k \ge 0.5^{k+1}$, on en déduit donc que :

$$u_{k+1} \geqslant \frac{15}{4} \times 0.5^{k+1}$$

et la propriété $\mathcal{P}(n)$ est donc héréditaire.

Conclusion. La propriété $\mathcal{P}(n)$ est initialisée et héréditaire, elle est donc vraie pour tout entier naturel n non nul d'après le principe de récurrence.

(b) Pour tout entier naturel n non nul:

$$u_{n+1} - u_n = \frac{1}{5}u_n + 3 \times 0,5^n - u_n$$
$$= 3 \times 0,5^n - \frac{4}{5}u_n$$
$$= \frac{4}{5} \left(\frac{15}{4} \times 0,5^n - u_n\right)$$

D'après la question 1a, cela entraı̂ne que $u_{n+1} - u_n \leq 0$.

(c) D'après la question précédente la suite (u_n) est décroissante à partir d'un certain rang. D'après 2a, pour tout entier naturel n non nul, $u_n \geqslant \frac{15}{4} \times 0.5^n > 0$, la suite est donc minorée. On en déduit, d'après le théorème de convergence des suites monotones, que la suite (u_n) est convergente.

3. (a) Soit $n \in \mathbb{N}$, alors:

$$v_{n+1} = u_{n+1} - 10 \times 0.5^{n+1}$$

$$= \frac{1}{5}u_n + 3 \times 0.5^n - 10 \times 0.5 \times 0.5^n$$

$$= \frac{1}{5}u_n - 2 \times 0.5^n$$

$$= \frac{1}{5}(u_n - 10 \times 0.5^n)$$

$$= \frac{1}{5}v_n.$$

La suite (v_n) est donc géométrique de raison $\frac{1}{5}$. Son premier terme vaut $v_0 = u_0 - 10 \times 0, 5^0 = 2 - 10 = -8$.

- (b) La suite (v_n) étant géométrique, on a, pour tout entier naturel $n: v_n = -8\left(\frac{1}{5}\right)^n$. On en déduit que $-8 \times \left(\frac{1}{5}\right)^n = u_n - 10 \times 0.5^n$ et donc que $: u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0.5^n$.
- (c) $-1 < \frac{1}{5} < 1$, donc $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$, de même : -1 < 0.5 < 1, donc $\lim_{n \to +\infty} 0.5^n = 0$. On en déduit par opérations sur les limites que $\lim_{n \to +\infty} u_n = 0$.
- 4. L'algorithme complet est :

Entrée:

n et u sont des nombres

Initialisation:

n prend la valeur 0 u prend la valeur 2

Traitement:

Sortie:

Afficher n