Intégrale et dérivée

Soit f une fonction continue, positive et croissante sur \mathbb{R} . Soit la fonction $F: x \mapsto \int_0^x f(t)dt$. Il est à remarquer que la variable est la borne supérieure de l'intégrale. Le but des questions suivantes

est de démontrer que F est dérivable sur \mathbb{R} et de déterminer sa dérivée. Soit a un réel fixé.

- 1. Rappeler comment démontrer qu'une fonction F est dérivable en un réel a.
- 2. Soit h un réel strictement positif.
 - (a) Tracer dans un repère une courbe C_f correspondant aux données du problème puis donner une interprétation graphique de la différence F(a+h) F(a).
 - (b) Encadrer alors F(a+h) F(a) par deux aires de rectangles.
 - (c) Obtenir alors un encadrement de $\frac{F(a+h) F(a)}{h}$.
 - (d) Terminer le raisonnement, et préciser la dérivée de F obtenue.
 - (e) Bonus : qu'est-ce qui change dans le raisonnement si l'on prend h < 0?

LYCÉE ALFRED KASTLER

TS 2016–2017

Intégrale et dérivée

Soit f une fonction continue, positive et croissante sur \mathbb{R} . Soit la fonction $F: x \mapsto \int_0^x f(t)dt$. Il est à remarquer que la variable est la borne supérieure de l'intégrale. Le but des questions suivantes est de démontrer que F est dérivable sur \mathbb{R} et de déterminer sa dérivée. Soit a un réel fixé.

- 1. Rappeler comment démontrer qu'une fonction F est dérivable en un réel a.
- 2. Soit h un réel strictement positif.
 - (a) Tracer dans un repère une courbe C_f correspondant aux données du problème puis donner une interprétation graphique de la différence F(a+h) F(a).
 - (b) Encadrer alors F(a+h) F(a) par deux aires de rectangles.
 - (c) Obtenir alors un encadrement de $\frac{F(a+h)-F(a)}{h}$.
 - (d) Terminer le raisonnement, et préciser la dérivée de F obtenue.
 - (e) Bonus : qu'est-ce qui change dans le raisonnement si l'on prend h < 0?