Devoir maison $n^{o}11$ – mathématiques Correction

Exercice 1

1. Un point de la courbe \mathscr{C} a pour coordonnées (x; f(x)).

Les points d'intersection de \mathscr{C} avec l'axe des abscisses ont pour ordonnée 0.

On résout donc

$$f(x) = 0 \Leftrightarrow (x+2)e^{-x} = 0$$
$$\Leftrightarrow (x+2) = 0 \text{ car } e^{-x} \neq 0$$
$$\Leftrightarrow x = -2$$

Ainsi le point A(-2;0) est l'unique point d'intersection de \mathscr{C} avec l'axe des abscisses.

Le point d'intersection de \mathscr{C} avec l'axe des ordonnées est le point B(0; f(0)).

On calcule donc : $f(0) = (0+2)e^{-0} = 2 \times 1 = 2$. Ainsi, B a pour coordonnées (0,2).

2.
$$\lim_{x \to -\infty} x + 2 = -\infty$$
 et $\lim_{x \to -\infty} e^{-x} = +\infty$. Donc $\lim_{x \to -\infty} f(x) = -\infty$.

D'autre part,
$$f(x) = xe^{-x} + 2e^{-x} = \frac{x}{e^x} + \frac{2}{e^x}$$
, puis $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ (car $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$) et $\lim_{x \to +\infty} \frac{2}{e^x} = 0$, donc $\lim_{x \to +\infty} f(x) = 0 + 0 = 0$.

Ainsi donc, $\mathscr C$ admet la droite d'équation y=0 (autrement dit l'axe des abscisses) pour asymptote horizontale en $+\infty$.

Exercice 2

1. (a) Comme
$$\lim_{x\to 0} \ln x = -\infty$$
, alors $\lim_{x\to 0} (\ln x)^2 = +\infty$ et $\lim_{x\to 0} f(x) = -\infty$.
D'autre part, $f(x) = (\ln x)^2 \left(\frac{1}{\ln x} - 1\right)$ et $\lim_{x\to +\infty} \ln x = +\infty$.

Alors
$$\lim_{x \to +\infty} \frac{1}{\ln x} - 1 = -1$$
 et $\lim_{x \to +\infty} f(x) = -\infty$.

- (b) La limite en 0 étant infinie, \mathcal{C} admet donc une asymptote verticale d'équation x=0.
- 2. Pour étudier les variations de f, on dérive tout d'abord la fonction f.

 $x \mapsto (\ln x)^2$ est de la forme u^2 avec $u(x) = \ln x$.

Alors
$$u'(x) = \frac{1}{x}$$
 et comme $(u^2)' = 2u'u$, on a $f' = u' - 2u'u$.

Donc
$$f'(x) = \frac{1}{x} - \frac{2}{x} \ln x = \frac{1 - 2 \ln x}{x}$$
.

Comme f est définie sur $]0; +\infty[$, on a x>0 donc il suffit d'étudier le signe de $1-2\ln x$.

Or
$$1 - 2 \ln x > 0 \Leftrightarrow \ln x < \frac{1}{2} \Leftrightarrow x < e^{\frac{1}{2}} \Leftrightarrow x < \sqrt{e}$$
.

Ainsi on obtient le tableau de variations suivant :

x	0	\sqrt{e}	$+\infty$
Signe de $f'(x)$		+ 0 -	
variations de f	-	$-\infty$ $\frac{1}{4}$ $\frac{1}{4}$	$-\infty$

Comme
$$\ln(\sqrt{e}) = \ln(e^{\frac{1}{2}}) = \frac{1}{2} \ln e = \frac{1}{2}$$
, alors $f(\sqrt{e}) = \frac{1}{2} - \left(\frac{1}{2}\right)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$.

Le maximum de f est donc $\frac{1}{4}$.

3. (a) On doit résoudre f(x) = 0. Or $f(x) = \ln x(1 - \ln x)$, donc f(x) = 0 si et seulement si $\ln x = 0$ ou $\ln x = 1$, autrement dit si x = 1 ou x = e.

Les points d'intersections entre \mathcal{C} et l'axe des abscisses ont pour coordonnées (1,0) et (e;0).

(b) Pour connaître la position relative entre \mathcal{C} et l'axe des abscisses il suffit de connaître le signe de $f(x) = \ln x (1 - \ln x)$. Or ln est croissante et $1 - \ln x > 0 \Leftrightarrow x < e$. Ainsi :

x	0		1		e		$+\infty$
$\ln x$		_	0	+		+	
$1 - \ln x$		+		+	0	_	
f(x)		_	0	+	0	_	

Conclusion : C est au dessus de l'axe des abscisses sur [1; e], en-dessous ailleurs.