Devoir surveillé n°1 – mathématiques 27/09/2016

Exercice 1 (Restitution organisée de connaissances – 3 points)

Démontrer la propriété de cours suivante : Soit u et v deux suites. Si, à partir d'un certain rang, $v_n \geqslant u_n$ et si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.

Exercice 2 (16 points)

Partie A

On considère l'algorithme suivant, dont les variables sont le réel U et les entiers naturels k et N.

```
Entrée :
Saisir N
Traitement :
U prend la valeur 0
Pour k allant de 0 à N-1 Faire
|U| prend la valeur 3U-2k+3
FinPour
Sortie :
Afficher U
```

Quel est l'affichage en sortie lorsque N=3? Il est conseillé de détailler la réponse.

Partie B

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 3u_n - 2n + 3$.

- 1. Calculer u_1 et u_2 .
- 2. (a) Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \geqslant n$.
 - (b) En déduire la limite de la suite (u_n) .
- 3. Démontrer que la suite (u_n) est croissante.
- 4. Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = u_n n + 1$.
 - (a) Démontrer que la suite (v_n) est géométrique.
 - (b) En déduire que, pour tout entier naturel n, $u_n = 3^n + n 1$.
- 5. Soit p un entier naturel non nul.
 - (a) Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0$, $u_n \ge 10^p$?
 - (b) Justifier que le plus petit n_0 vérifie $n_0 \leq 3p$.

Exercice 3 (1 point)

Soit A et B deux événements. On donne $\mathbb{P}(B) = 0.7$ et $\mathbb{P}_B(\overline{A}) = 0.3$. Calculer $\mathbb{P}(A \cap B)$.