Fonctions

 \sim

Exercice 1

Voici un tableau de variations :

x	-3	-1	1	3
variations de f	-0,3	-0,5	0,5	0,3

- 1. Tracer une représentation graphique de la fonction f dans un repère orthogonal bien choisi.
- 2. (a) Quel est le maximum de f? En quelle valeur est-il atteint?
 - (b) Quel est le minimum de f? En quelle valeur est-il atteint?
- 3. (a) Combien de solutions l'équation f(x) = 0 possède-t-elle?
 - (b) Combien de solutions l'équation f(x) = 0.4 possède-t-elle?

Exercice 2

1. Tracer, dans un même repère, les droites représentant les fonctions affines f,g et h suivantes :

$$f(x) = x$$
 $g(x) = 8$ $h(x) = \frac{1}{2}x + 3$

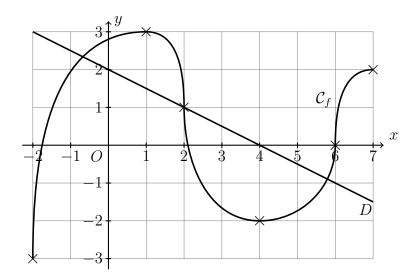
- 2. (a) Calculer l'image de 4 par la fonction h.
 - (b) Calculer le nombre qui a pour image 12 par la fonction h.
 - (c) Résoudre l'équation h(x) = g(x) graphiquement puis par calcul.

Exercice 3

On considère les fonctions f, g et h définies sur \mathbb{R} par :

$$f(x) = x^2 - 3x$$
 $g(x) = x^3 - 3x$ $h(x) = x - 3$

1. Compléter les cases blanches du tableau suivant (utiliser efficacement la calculatrice):


x	-2	-1,5	-1	-0.5	0	0,5	1	1,5	2	2,5	3	3,5	4
f(x)			4	1,75								1,75	4
g(x)	-2	1,12							2				
h(x)	-5												1

- 2. Tracer, dans un même repère, les représentations graphiques C_f , C_g et C_h des fonctions f, g et h sur [-2; 4]. On utilisera :
 - 2 cm (ou carreaux) pour une unité en abscisse (de -2 à 4);
 - 1 cm (ou carreau) pour une unité en ordonnée (de -5 à 5);
 - Une couleur différente par courbe, sans oublier de les nommer.
- 3. À l'aide du graphique, déterminer les coordonnées des points d'intersection de \mathcal{C}_f et \mathcal{C}_h .
- 4. Comparaison des fonctions f et g.
 - (a) Par lecture graphique, donner les coordonnées des points d'intersection entre \mathcal{C}_f et \mathcal{C}_g .
 - (b) Résoudre l'équation f(x) = g(x)
 - (c) Retrouver alors par calcul les coordonnées des points d'intersection entre \mathcal{C}_f et \mathcal{C}_g .

Exercice 4

Soit ci-dessous:

- D la droite d'équation $y = -\frac{1}{2}x + 2$;
- C_f la représentation graphique d'une fonction f définie sur [-2; 7].

Répondre par vrai ou faux aux affirmations suivantes :

	AFFIRMATIONS	vrai ou faux
1	L'image de -2 par la fonction f est 4	
2	Le nombre 7 est un antécédent du nombre 2 par la fonction f	
3	f(1) = 3	
4	Le nombre 2 a trois antécédents par la fonction f	
5	L'équation $f(x) = 1$ possède 3 solutions dans l'intervalle $[-2; 4]$	
6	L'équation $f(x) = -\frac{1}{2}x + 2$ possède 3 solutions dans $[-2;7]$	
7	La fonction f est croissante sur l'intervalle $[-1; 2]$	
8	La fonction f est décroissante sur l'intervalle $[1;4]$	
10	La fonction f est négative sur l'intervalle $[4;6]$	
11	La fonction f est positive sur l'intervalle $[-1,5;-0,5]$	