Questions ouvertes

Des questions ouvertes peuvent être présentes au baccalauréat. En voici deux exemples.

Exercice 1 (de type bac, 3 points)

On considère l'équation $(E_1): e^x - x^n = 0$,

où x est un réel strictement positif et n un entier naturel non nul.

- 1. Montrer que l'équation (E_1) est équivalente à l'équation (E_2) : $\ln x \frac{x}{n} = 0$.
- 2. Pour quelles valeurs de n l'équation (E_1) admet-elle deux solutions?

Exercice 2 (de type bac, 3 points)

Pour tout réel k strictement positif, on considère la fonction f_k définie par $f_k(x) = x + k e^{-x}$.

On note C_k la courbe représentative de f_k dans un repère orthonormé.

Pour tout réel k > 0, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe C_k .

Les points A_k sont-ils alignés?

LYCÉE ALFRED KASTLER

ACCPE TS 2017–2018

Questions ouvertes

Des questions ouvertes peuvent être présentes au baccalauréat. En voici deux exemples.

Exercice 1 (de type bac, 3 points)

On considère l'équation (E_1) : $e^x - x^n = 0$,

où x est un réel strictement positif et n un entier naturel non nul.

- 1. Montrer que l'équation (E_1) est équivalente à l'équation (E_2) : $\ln x \frac{x}{n} = 0$.
- 2. Pour quelles valeurs de n l'équation (E_1) admet-elle deux solutions?

Exercice 2 (de type bac, 3 points)

Pour tout réel k strictement positif, on considère la fonction f_k définie par $f_k(x) = x + k e^{-x}$.

On note C_k la courbe représentative de f_k dans un repère orthonormé.

Pour tout réel k > 0, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe C_k .

Les points A_k sont-ils alignés?

Questions ouvertes

Des questions ouvertes peuvent être présentes au baccalauréat. En voici deux exemples.

Exercice 1 (de type bac, 3 points)

On considère l'équation $(E_1): e^x - x^n = 0$,

où x est un réel strictement positif et n un entier naturel non nul.

- 1. Montrer que l'équation (E_1) est équivalente à l'équation (E_2) : $\ln x \frac{x}{n} = 0$.
- 2. Pour quelles valeurs de n l'équation (E_1) admet-elle deux solutions?

Exercice 2 (de type bac, 3 points)

Pour tout réel k strictement positif, on considère la fonction f_k définie par $f_k(x) = x + k e^{-x}$.

On note C_k la courbe représentative de f_k dans un repère orthonormé.

Pour tout réel k > 0, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe C_k .

Les points A_k sont-ils alignés?

LYCÉE ALFRED KASTLER

ACCPE TS 2017–2018

Questions ouvertes

Des questions ouvertes peuvent être présentes au baccalauréat. En voici deux exemples.

Exercice 1 (de type bac, 3 points)

On considère l'équation (E_1) : $e^x - x^n = 0$,

où x est un réel strictement positif et n un entier naturel non nul.

- 1. Montrer que l'équation (E_1) est équivalente à l'équation (E_2) : $\ln x \frac{x}{n} = 0$.
- 2. Pour quelles valeurs de n l'équation (E_1) admet-elle deux solutions?

Exercice 2 (de type bac, 3 points)

Pour tout réel k strictement positif, on considère la fonction f_k définie par $f_k(x) = x + k e^{-x}$.

On note C_k la courbe représentative de f_k dans un repère orthonormé.

Pour tout réel k > 0, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe C_k .

Les points A_k sont-ils alignés?

Aides pour l'exercice 1

question 1	compte des utilisations
Isoler les expressions de chaque côté de l'équation	9
Appliquer le logarithme puis les formules associées	4
question 2	
Résoudre l'équation ne fonctionne pas; trouver une autre idée	7
Étudier les variations d'une fonction	14
Utiliser l'expression de l'équation (E_2)	10
Dériver la fonction	2
$\frac{x}{n} = \frac{1}{n}x$ et n est constant, comme par exemple $\frac{1}{3}x$	6
Pour étudier le signe de la dérivée, résoudre $f'(x) > 0$	6
Établir le tableau de variation de la fonction	1
Déterminer les limites en 0 et en $+\infty$?
D'après le tableau, à quelle condition $f(x) = 0$ a deux solutions?	2
Résoudre une inéquation	?
Utiliser le théorèmes des valeurs intermédiaires	?