Logarithme

\sim

Exercice 1

Soit f la fonction définie sur $]0; +\infty[$ par $: f(x) = \frac{1 + \ln x}{r^2}.$

- 1. Calculer f'(x) et en déduire les variations de la fonction f sur $]0; +\infty[$.
- 2. Étudier les limites de f en 0 et en $+\infty$. En déduire les asymptotes à la courbe représentative de f.

Exercice 2

Reprendre l'exercice précédent avec la fonction f définie par : $f(x) = \ln x - 3(\ln x)^2$.

Nombres complexes

Rappel L'argument d'un nombre complexe est unique à 2π près.

Ainsi, deux arguments θ_1 et θ_2 sont ceux d'un même nombre complexe si et seulement si $\theta_2 - \theta_1$ est un multiple entier de 2π .

Exercice 3

Dans chaque cas, les deux nombres donnés peuvent-ils être arguments d'un même nombre complexe?

1.
$$\frac{17\pi}{4}$$
 et $\frac{\pi}{4}$.

2.
$$-\frac{55\pi}{3}$$
 et $\frac{\pi}{3}$.

3.
$$\frac{155\pi}{6}$$
 et $-\frac{\pi}{6}$.

Exercice 4

Dans chacun des cas suivants, déterminer graphiquement (et non algébriquement) l'ensemble des points M(z) qui vérifient la condition imposée (revoir les exercices vus en cours sur le module).

1.
$$|z-2|=5$$

2.
$$|z - 1 - i| = 9$$

3.
$$|z+i| = |z+5-2i|$$

Exercice 5 (Uniquement si le précédent a été fait)

Reprendre l'exercice précédent en caractérisant chacun des ensembles recherchés sous forme d'une équation usuelle (de cercle ou de droite).

Pour cela, commencer par poser z = x + iy et exprimer les modules.