Devoir maison n°13 – mathématiques Correction

Exercice 1

1. La fonction f est définie pour tout réel x tel que x > 0 (à cause de $\ln(x)$) et $\ln(x) - 1 \neq 0$ (un dénominateur ne doit pas s'annuler).

Or
$$\ln(x) - 1 = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e$$
.

Ainsi, f(x) est défini sur $]0; e[\cup]e; +\infty[$, et en particulier sur \mathcal{D} .

2. On sait que $\lim_{x\to 0} \ln(x) = -\infty$, et on a $\lim_{x\to 0} 2x + 1 = 1$. Alors $\lim_{x\to 0} f(x) = 0$.

On a
$$x > e \Leftrightarrow \ln x > 1 \Leftrightarrow \ln x - 1 > 0$$
.

Alors
$$\lim_{\substack{x \to e \\ x > e}} \ln x - 1 = 0^+$$
 et $\lim_{\substack{x \to e \\ x < e}} \ln x - 1 = 0^-$.

De plus,
$$\lim_{x\to e} 2x + 1 = 2e + 1 > 0$$
.

Alors
$$\lim_{\substack{x \to e \\ x > e}} f(x) = +\infty$$
 et $\lim_{\substack{x \to e \\ x < e}} f(x) = -\infty$.

Enfin,
$$f(3e) = \frac{6e+1}{\ln(3)} \operatorname{car} \ln(3e) = \ln(3) + \ln(e) = \ln(3) + 1.$$

D'après ces résultats, on en déduit qu'il y a une asymptote verticale d'équation x = e.

3. f est de la forme $\frac{u}{v}$ avec u(x) = 2x + 1 et $v(x) = \ln(x) - 1$.

Alors
$$u'(x) = 2$$
, $v'(x) = \frac{1}{x}$.

Par suite,
$$f' = \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
 et :

$$f'(x) = \frac{2(\ln(x) - 1) - (2x + 1)\frac{1}{x}}{(\ln(x) - 1)^2}$$

$$= \frac{2x(\ln(x) - 1) - (2x + 1)}{x(\ln(x) - 1)^2}$$

$$= \frac{2x\ln(x) - 4x - 1}{x(\ln(x) - 1)^2} = \frac{g(x)}{x(\ln(x) - 1)^2}$$

- 4. On sait que $\lim_{x\to 0} x \ln(x) = 0$. Alors $\lim_{x\to 0} 2x \ln(x) 4x 1 = 2 \times 0 4 \times 0 1 = -1$. Et on a $g(3e) \simeq 0.61$
- 5. On a $g'(x) = 2 \ln x + 2x \times \frac{1}{x} 4$ (on utilise (uv)' = u'v + uv'). En simplifiant, on obtient $g'(x) = 2 \ln x 2$.

On résout alors $g'(x) > 0 \Leftrightarrow \ln x > 1 \Leftrightarrow x > e$.

Alors g'(x) est négative sur]0; e[et positive sur]e; 3e].

6. On obtient le tableau de variations suivant :

x	0		е		$3\mathrm{e}$
Signe de $g'(x)$		_	0	+	
variations de g	-1		-2e-1		0,61

- 7. D'après les variations de g, on voit que g < 0 sur]0; e[. Ensuite, g est continue (car dérivable), strictement croissante sur [e; 3e]. De plus, g(e) < 0 et g(3e) > 0. Donc d'après le corollaire du théorème des valeurs intermédiaires, il existe un unique réel α dans [e; 3e] (et par suite dans]0; 3e] solution de g(x) = 0. Grâce à la calculatrice on obtient $\alpha \simeq 7,87$.
- 8. On sait que sur \mathcal{D} , x > 0; de même, $(\ln(x) 1)^2 > 0$. Le signe de f'(x) est alors celui de g(x). D'après les questions précédentes, on obtient (ne pas oublier que f n'est pas définie en e):

x	0	e α 3 e
Signe de $f'(x)$	_	- 0 +
variations de f	0 $-\infty$	$+\infty$ 15,76 $15,75$