Fonctions

Pour l'ensemble des exercices suivants, préciser si les affirmations sont vraies ou fausses (justifier).

Exercice 1

On donne le tableau de variations d'une fonction f définie sur [-6; 6].

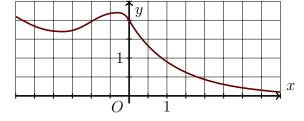
x	-6	-4	0	1	6
variations de f'	0	-3	8		5

- 1. Pour tout réel de l'intervalle [-6; 6] on a $0 \le f(x) \le 5$.
- 2. Pour tout réel de l'intervalle [-6; 6] on a $-3 \le f(x) \le 8$.
- 3. Pour tout réel de l'intervalle [-6; 6] on a $-10 \le f(x) \le 10$.

Exercice 2

On a représenté graphiquement une fonction f définie sur l'intervalle [-3;4].

- 2. Pour tout réel $x \in [0; 4]$, on a f'(x) < 0.
- 3. Sur [-3; 4], f'(x) = 0 possède 3 solutions.
- 4. Pour tout réel $x \in [-3; 4]$, on a f(x) > 0.



Exercice 3

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x}{x^2 + 1}$.

- 1. La courbe représentative de f admet une tangente horizontale au point d'abscisse 1.
- 2. La fonction f est croissante sur l'intervalle [-1;1].
- 3. f'(0) = 0.

Exercice 4

On considère la fonction f définie sur [-6;4] par : $f(x) = \frac{1}{12}x^3 + \frac{1}{4}x^2 - 2x + 1$.

- 1. Le maximum de f est atteint en x = -4.
- 2. Le minimum de f est négatif.
- 3. La fonction f est décroissante sur [-6;4].

Exercice 5

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = (x-4)\sqrt{x}$.

- 1. La fonction admet un minimum en x = 1,33.
- 2. Le minimum de f est égal à $\frac{-16}{9}\sqrt{3}$.
- 3. La fonction f admet un maximum.