Devoir maison n°06 – mathématiques Donné le 14/11/2017 – à rendre le 21/11/2017

Exercice 1

1. Voici deux propositions où a et b désignent des nombres réels :

$$\mathcal{P}_c : (a+b)^2 = 0$$
 $\mathcal{P}_z : a = 0 \text{ et } b = 0$

Si a et b sont des nombres réels tels que \mathcal{P}_z est vraie, alors \mathcal{P}_c est vraie (car $(0+0)^2=0$). Ainsi pour a et b réels, la proposition \mathcal{P}_z implique la proposition \mathcal{P}_c , ce que l'on note $\mathcal{P}_z \Rightarrow \mathcal{P}_c$. Est-il vrai que pour a et b réels, $\mathcal{P}_c \Rightarrow \mathcal{P}_z$? Justifier.

2. On dit que \mathcal{P} et \mathcal{Q} sont équivalentes si $\mathcal{P} \Rightarrow \mathcal{Q}$ et $\mathcal{Q} \Rightarrow \mathcal{P}$. On le note bien sûr $\mathcal{P} \Leftrightarrow \mathcal{Q}$. Pour a et b des nombres réels, on définit les propriétés suivantes :

$$\mathcal{P}_1: a^2 = b^2$$
 $\mathcal{P}_2: a = b \text{ ou } a = -b$

Démontrer que $\mathcal{P}_1 \Leftrightarrow \mathcal{P}_2$.

- 3. Application : résoudre l'équation $(2x-3)^2 = (3x+9)^2$ sans développer les carrés.
- 4. Vérification : résoudre l'équation précédente par une autre méthode.

Exercice 2

Tracer une courbe \mathcal{C} représentant une fonction f définie sur l'intervalle [0, 9] ayant les propriétés suivantes:

- f(0) = 0; f(3) = 6 et f'(3) = 1; f(6) = 6 et f'(6) = -4; f(5) = 7 et f'(5) = 0; f(9) = 0.

On prendra bien soin de tracer une partie des tangentes en les points d'abscisses 1, 3, 5 et 6.