Limites de suites géométriques

On souhaite étudier les valeurs de q^n lorsque n prend des grandes valeurs.

- 1. En choisissant plusieurs valeurs de q (positives), déterminer vers quelles valeurs (différentes) peuvent tendre les termes q^n . Donner les valeurs trouvées ci-dessous :
 - Si q =...., alors q^n tend vers
- Si $q = \dots$, alors q^n tend vers
- Si $q = \dots$, alors q^n tend vers
- 2. Émettre une conjecture sur le comportement de q^n à l'infini en fonction de la valeur de q:
 - \bullet Lorsque q......, alors q^n tend vers;
 - \bullet Lorsque q......, alors q^n tend vers;
 - \bullet Lorsque q....., alors q^n tend vers
- 3. Pour q = 1,2, déterminer avec la calculatrice le plus petit rang n à partir duquel $1,2^n > 10^6$.

 $1,2^n$ peut dépasser définitivement toute valeur donnée aussi grande soit-elle (ici 10^6) On écrit alors $\lim_{n\to+\infty}1,2^n=+\infty$.

4. On considère l'algorithme suivant (écrit de deux manières différentes) :

q prend la valeur 0,8
Saisir A
N prend la valeur 0
Tant que $q^N \geqslant A$ Faire
| N prend la valeur N+1
Fin Tant que
Afficher N

 $\begin{array}{l} q \! \leftarrow \! 0,\! 8 \\ \text{Saisir A} \\ N \! \leftarrow \! 0 \\ \text{Tant que } q^N \! \geqslant \! A \text{ Faire} \\ \mid N \! \leftarrow \! N \! + \! 1 \\ \text{Fin Tant que} \\ \text{Afficher N} \end{array}$

- (a) Quel est le rôle de cet algorithme?
- (b) Quelle valeur de N est affichée lorsque l'on donne à A la valeur 10^{-7} ?

Le terme positif 0.8^n peut devenir inférieur à tout nombre positif donné aussi petit soit-il (ici 10^{-7}). On écrit $\lim_{n\to +\infty}0.8^n=0$.