Devoir surveillé n°1 – mathématiques 04/10/2018

Exercice 1 (18 points)

On considère la suite géométrique (u_n) , de raison 0,9 et de premier terme $u_0 = 50$.

1. (a) Recopier et compléter l'algorithme cicontre afin qu'il calcule et affiche le $25^{\rm e}$ terme de cette suite, c'est-à-dire u_{24} .

(b) Pour tout entier naturel n, exprimer u_n en fonction de n.

(c) Calculer u_{24} et donner une valeur approchée du résultat à 10^{-3} près.

Variables: N est un entier naturel

U est un nombre réel

Initialisation : U prend la valeur ... Traitement : Pour N allant de 1 à 24

U prend la valeur ...

Fin Pour

Sortie: Afficher U

2. Déterminer le plus petit entier naturel n tel que $u_n < 0.01$.

3. On souhaite calculer la somme $S_{24} = u_0 + u_1 + \cdots + u_{24}$. Voici trois propositions d'algorithmes :

Variables:

N est un entier naturel S est un nombre réel

Initialisation:

S prend la valeur 0

Traitement:

Pour N allant de 0 à 24

S prend la valeur

 $S + 50 \times 0,9^{N}$

Fin Pour

Sortie:

Afficher S

Variables :

N est un entier naturel S est un nombre réel

Initialisation:

S prend la valeur 0

Traitement:

Pour N allant de 0 à 24 S prend la valeur

 $50 \times 0, 9^{N}$

 $50 \times 0,9$

Fin Pour **Sortie**:

Afficher S

Algorithme 2

Variables :

N est un entier naturel S est un nombre réel

Initialisation:

S prend la valeur 50

Traitement:

Pour N allant de 0 à 24 $\,$

S prend la valeur

 $S + 50 \times 0,9^N$

Fin Pour

Sortie:

Afficher S

Algorithme 3

- Algorithme 1
- (a) Un seul de ces algorithmes permet de calculer la somme S_{24} et de l'afficher. Préciser lequel en justifiant la réponse.
- (b) Calculer la somme S_{24} .

On donnera une valeur approchée du résultat à l'unité près.

4. Pour tout entier naturel n, on note $S_n = u_0 + \cdots + u_n$.

On admet que la suite (S_n) est croissante et que pour tout entier naturel n,

 $S_n = 500 - 450 \times 0.9^n.$

- (a) Déterminer la limite de la suite (S_n) lorsque n tend vers $+\infty$.
- (b) Alex affirme que S_n peut dépasser 500 pour une valeur de l'entier n suffisamment grande. Que pensez-vous de son affirmation? Justifier la réponse.

Exercice 2 (2 points)

Le 31 décembre 2015 une forêt comportait 1 500 arbres. Les exploitants de cette forêt prévoient que chaque année, 5% des arbres seront coupés et 50 arbres seront plantés. On modélise le nombre d'arbres de cette forêt par une suite (u_n) où, pour tout entier naturel n, u_n est le nombre d'arbres au 31 décembre de l'année (2015 + n). Ainsi $u_0 = 1$ 500.

- 1. Calculer u_1 et u_2 .
- 2. Justifier que pour tout entier naturel n, on a : $u_{n+1} = 0.95 \times u_n + 50$.