Chapitre:

Fonctions exponentielles

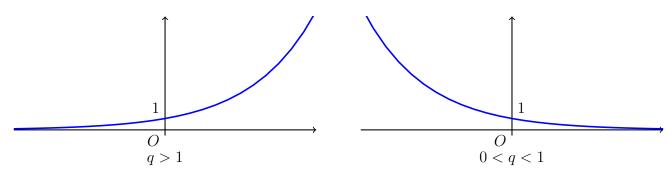
\sim

I. Fonction exponentielle de base q

* Activité : fichier geogebra avec tableur : introduction par représentation de suite géométrique.

<u>Définition</u> Soit q un réel strictement positif. La fonction $x \mapsto q^x$ s'appelle fonction exponentielle de base q. Elle est définie, dérivable et **strictement positive** sur \mathbb{R} .

Ses variations dépendent de la valeur de q comme pour les suites géométriques. Dans tous les cas, $q^0=1$.



On peut calculer des images de cette fonction avec la calculatrice avec la touche \land ou x^y . On admet la formule suivante, appelée **relation fonctionnelle**:

Propriété | Pour tous réels x et y,

$$q^{x+y} = q^x \times q^y$$

Les propriétés déjà connues avec des entiers se prolongent donc pour des réels. On dit que l'exponentielle transforme une somme en produit.

Par conséquent :

Propriété | Soit x et y des réels, soit m un entier relatif. Alors :

$$q^{-x} = \frac{1}{q^x}$$
 $q^{x-y} = \frac{q^x}{q^y}$ $(q^x)^m = q^{mx}$

Enfin, on a $q^{\frac{1}{2}} = \sqrt{q}$.

► Exercices: 1,2p79 (variations et représentation)

► Exercices: 6 à 13 page 81, 28 à 30 page 86 (relation fonctionnelle)

II. Fonction exponentielle de base e

 \otimes Activité: fichier ggb montrant l'existence de la valeur de q pour laquelle le coefficient directeur de la tangente au point d'abscisse 0 de la courbe de la fonction exponentielle de base q vaut 1.

Propriété Il existe une seule valeur du réel q telle que la tangente au point A(0;1) à la courbe représentative de la fonction $x \mapsto q^x$ a pour coefficient directeur 1. Cette valeur particulière du réel q est notée \mathbf{e} . Le réel e est environ égal à 2,718 (mais n'a pas de valeur exacte sous forme décimal ou rationnelle).

<u>Définition</u> La fonction $x \mapsto e^x$ est appelée fonction exponentielle de base e ou tout simplement exponentielle. On la note parfois exp.

Propriété | On a les propriétés suivantes, conséquences de celles de la section précédente :

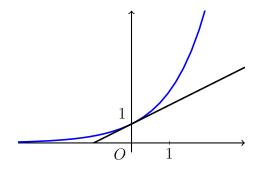
- $\bullet \ exp(x) = e^x$
- La fonction est dérivable sur \mathbb{R} et admet 1 pour nombre dérivé en 0 (exp'(0) = 1).
- Quelque soit le réel $x, e^x > 0$.
- Quelque soient les réels x et y et l'entier relatif m,

$$e^{x+y} = e^x \times e^y$$
 $e^{-x} = \frac{1}{e^x}$ $e^{x-y} = \frac{e^x}{e^y}$ $(e^x)^m = e^{mx}$

Propriété pour tout réel x, $exp'(x) = e^x$. Autrement dit, la fonction exponentielle est égale à sa fonction dérivée.

 \triangle ce n'est valable que pour $x \mapsto e^x$!

En conséquence, puisque la dérivée est strictement positive (car l'exponentielle l'est), la fonction exponentielle est strictement croissante sur \mathbb{R} . La représentation graphique est alors ainsi :



► Exercices: 3,4,5p80 (étude de variations simples) et 59 à 67p88 (dérivation)

Propriété

- 1. Pour tout réel $x \leq 0$, $0 < e^x \leq 1$;
- 2. Pour tout réel $x \ge 0$, $e^x \ge 1$;
- 3. Pour tous réels x et y, $e^x = e^y \Leftrightarrow x = y$ et $e^x < e^y \Leftrightarrow x < y$.
- **Exercices**: 44 à 47 page 87 et 52 à 55 page 87 (équations et inéquations)

III. Exponentielle de u

Propriété | Soit u une fonction dérivable. Alors la fonction $e^u: x \mapsto e^{u(x)}$ est dérivable, et

$$(e^u)'(x) = u'(x) \times e^{u(x)}$$

Exemple Soit à dériver $f: x \mapsto e^{3x^2+2x}$.

► Exercices :

Propriété | Soit u une fonction dérivable. Alors les fonctions u et e^u ont le même sens de variation.

Démonstration : En effet, le signe de la dérivée de e^u est celui de u' (voir la formule plus haut).

Exemple Donner les variations de la fonction f définie plus haut.

► Exercices: 71 à 73 page 88 (dérivation et variations)

► Exercices: 78,79,80 page 89 (fonctions à paramètre)

★ Approfondissement: 88,89,90 page 91 (exercices de type bac)