LYCÉE MARIE CURIE NOM Prénom :

 $\begin{array}{c} 2^{\mathrm{de}} \\ 2021 – 2022 \end{array}$

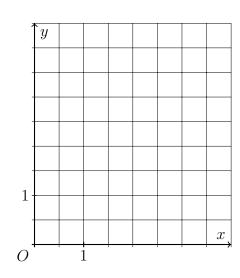
Devoir surveillé n°4 – mathématiques 29/01/2022 Tout le devoir est à faire sur l'énoncé

Exercice 1 (4 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - x + 2$.

- 1. Calculer l'image de -1 par f.
- 2. Est-ce que 2 est un antécédent de 0 par f? Justifier.
- 3. On admet que f(1)=4. Dans chaque cas suivant, écrire une phrase traduisant cela en utilisant le mot donné : (a) antécédent
 - (b) image

Exercice 2 (6 points)

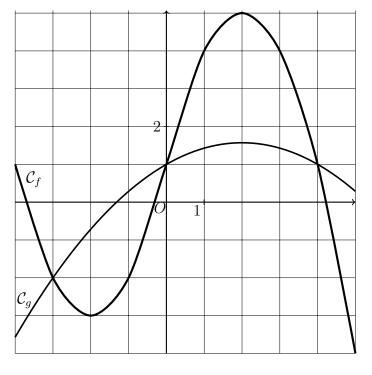

On considère la fonction g définie sur [0;4] par $g(x) = x^3 - 6x^2 + 9x$.

1. Compléter le tableau de valeurs ci-dessous (directement sur l'énoncé) :

`			,			
x	0	1	2	3	4	
g(x)						

- 2. Tracer alors la courbe de la fonction g sur [0;4] dans le repère ci-contre.
- 3. Déterminer graphiquement l'image de 2,5.

Exercice 3 (5 points)


On considère deux fonctions f et g définies sur [-4; 5] dont les courbes représentatives \mathcal{C}_f et \mathcal{C}_g sont tracées ci-contre.

Résoudre graphiquement les (in)équations suivantes. On pourra donner les ensembles de solution directement sur l'énoncé.

1.
$$f(x) = 4$$

$$2. \ f(x) = g(x)$$

3.
$$f(x) < -1$$

Exercice 4 (5 points)

On considère les fonctions g et h suivantes :

$$g(x) = 2x - \frac{2}{3}$$
 $h(x) = \frac{1}{2}x + 3$

1. Déterminer algébriquement les antécédents de 12 par la fonction h.

2. Résoudre l'inéquation $h(x) \leq g(x)$.

LYCÉE MARIE CURIE NOM Prénom :

 $\begin{array}{c} 2^{\mathrm{de}} \\ 2021 – 2022 \end{array}$

Devoir surveillé n°4 – mathématiques Sujet bis Tout le devoir est à faire sur l'énoncé

Exercice 1 (4 points)

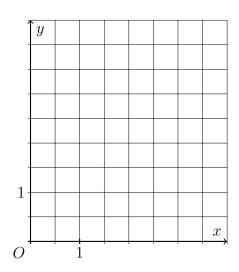
Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - 2x + 2$.

- 1. Calculer l'image de -2 par f.
- 2. Est-ce que 0 est un antécédent de 2 par f ? Justifier.
- 3. On admet que f(1) = 3.

Dans chaque cas suivant, écrire une phrase traduisant cela en utilisant le mot donné :

- (a) antécédent
- (b) image

Exercice 2 (6 points)


On considère la fonction g définie sur [0;4] par

$$g(x) = -\frac{2}{3}x^3 + 4x^2 - \frac{19}{3}x + 4.$$

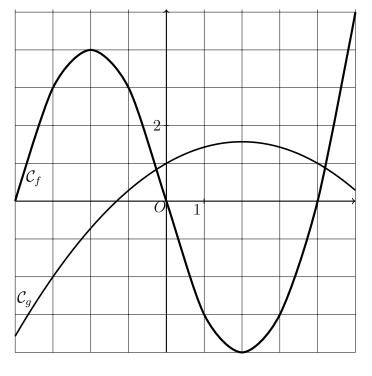
1. Compléter le tableau de valeurs ci-dessous (directement sur l'énoncé) :

`	· · · · · · · · · · · · · · · · · · ·						
x	0	1	2	3	4		
g(x)							

- 2. Tracer alors la courbe de la fonction g sur [0;4] dans le repère ci-contre.
- 3. Déterminer graphiquement les antécédents de 2,5.

4. Déterminer graphiquement l'image de 1,5.

Exercice 3 (5 points)


On considère deux fonctions f et g définies sur [-4; 5] dont les courbes représentatives \mathcal{C}_f et \mathcal{C}_g sont tracées ci-contre.

Résoudre graphiquement les (in)équations suivantes. On pourra donner les ensembles de solution directement sur l'énoncé.

1.
$$f(x) = -2$$

$$2. \ f(x) = g(x)$$

3.
$$f(x) \ge 3$$

Exercice 4 (5 points)

On considère les fonctions f et g suivantes :

$$f(x) = 2x - \frac{2}{3}$$
 $g(x) = \frac{1}{2}x + 4$

1. Déterminer algébriquement les antécédents de 12 par la fonction f.

2. Résoudre l'inéquation $f(x) \leq g(x)$.