Modèles fonctionnels

Exercice 1 (Dérivation – révision de première)

Dans chaque cas, dériver la fonction f.

1.
$$f(x) = 3x - 2$$

2.
$$f(x) = -x^2 + 5x + 256$$

3.
$$f(t) = 3t^2 - t - 2$$

1.
$$f(x) = 3x - 2$$
 6. $f(x) = \frac{3}{x}$ 11. $f(x) = (5x - 3)(6x - 2)$ 2. $f(x) = -x^2 + 5x + 256$ 7. $f(t) = 2\sqrt{t}$ 12. $f(x) = \frac{5x - 2}{2x + 3}$ 4. $f(x) = \frac{x^3}{3} - \frac{x^2}{6} + x - 4$ 8. $f(x) = \sqrt{x} - x^3 - 3x + \frac{4}{x}$ 13. $f(x) = \frac{1}{x^2 + 1}$ 15. $f(x) = -\frac{3x^4}{5} + \frac{3x^2}{4} + 1$ 10. $f(x) = 3x^2\sqrt{x}$ 14. $f(x) = \sqrt{5x + 6}$

$$5. \ f(x) = -\frac{3x^4}{5} + \frac{3x^2}{4} + \dots$$

$$6. \ f(x) = \frac{3}{x}$$

$$7. \ f(t) = 2\sqrt{t}$$

8.
$$f(x) = \sqrt{x} - x^3 - 3x + \frac{4}{x}$$

$$9. \ f(x) = x\sqrt{x}$$

$$10. \ f(x) = 3x^2\sqrt{x}$$

11.
$$f(x) = (5x-3)(4x^2+2)$$

12.
$$f(x) = \frac{5x - 2}{2x + 3}$$

13.
$$f(x) = \frac{1}{x^2 + 1}$$

14.
$$f(x) = \sqrt{5x + 6}$$

Exercice 2 (Dérivation)

Dans chaque cas, on définit une fonction f sur un ensemble D. Exprimer f'(x) en fonction de x.

1.
$$f(x) = 2x^3 - 4x^2 + 3x + 5 \text{ sur } D = \mathbb{R}$$
.

2.
$$f(x) = \frac{2}{x} - 3x^2 + 4\sqrt{x} \text{ sur } D =]0; +\infty[.$$

3.
$$f(x) = 5 e^x - x + 3 \text{ sur } D = \mathbb{R}$$
.

Exercice 3 (Dérivation)

Dans chaque cas, déterminer l'expression de la fonction dérivée (sur $D = \mathbb{R}$).

1.
$$f(x) = (4x+1)^2$$

3.
$$f(x) = 5e^{2x+4}$$

5.
$$f(x) = (e^x + 1)^2$$

2.
$$f(x) = (-6x + 1)^2$$

4.
$$f(x) = e^{-x^2 + x + 1}$$

6.
$$f(x) = -4e^{x^2}$$

Exercice 4 (Dérivation)

Dans chaque cas, on définit une fonction f sur un ensemble D. Exprimer f'(x) en fonction de x.

1.
$$f(x) = (2x^3 - 3)^2$$
 sur $D = \mathbb{R}$.

2.
$$f(x) = 4(-4x^2 + 3x + 5)^2 \text{ sur } D = \mathbb{R}.$$

3.
$$f(x) = 2(x-1)^3 + 0.5x + 2 \text{ sur } D = \mathbb{R}.$$

4.
$$f(x) = \frac{2x+1}{3x+6} \text{ sur } D = \mathbb{R} \setminus \{-2\}.$$

5.
$$f(x) = \frac{-2x+1}{x^2+1} \text{ sur } D = \mathbb{R}.$$

6.
$$f(x) = \frac{x^2 - 3}{2x - 8} \text{ sur } D = \mathbb{R} \setminus \{4\}.$$

7.
$$f(x) = 3e^{-x^2} \text{ sur } D = \mathbb{R}.$$

8.
$$f(x) = 4 - 3e^{-0.1x+3}$$
 sur $D = \mathbb{R}$.

9.
$$f(x) = \sqrt{5x + 10} \text{ sur } D =]-2; +\infty[$$
.

10.
$$f(x) = (2x+1)e^{-0.5x}$$
 sur $D = \mathbb{R}$.

11.
$$f(x) = (0.5x - 1) e^{3x+1} \text{ sur } D = \mathbb{R}.$$

12.
$$f(x) = \frac{x+1}{e^{2x}} \text{ sur } D = \mathbb{R}.$$

Exercice 5 (Signe)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (-3x + 1) e^{-x}$.

Le tableau de signes ci-dessous comporte des erreurs. Les corriger.

x	$-\infty$		$0,\!33$		$+\infty$
e^{-x}			_		
-3x + 1		+	0	_	
f(x)		_	0	+	

Exercice 6 (Signe)

Obtenir, dans chaque cas, le tableau de signes de la fonction f définie par son expression sur \mathbb{R} .

1.
$$f(x) = 5x^2 - 5x - 10$$

4.
$$f(x) = \frac{2x-3}{x+1} \ (x \neq -1)$$

2.
$$f(x) = -0.3x^2 + 1.8x - 1.5$$

5.
$$f(x) = 3e^{2x} - 3$$

3.
$$f(x) = (-3x+1)(2x+8)$$

6.
$$f(x) = 2e^{-0.1x} + 1$$

Exercice 7 (Variations)

Dans chaque cas, on considère une fonction f définie sur un intervalle I. Justifier que f est monotone sur I.

1.
$$f(x) = \sqrt{-3x + 9} \text{ sur } I =]-\infty; 3].$$

4.
$$f(x) = \frac{-5x+2}{2x+4}$$
 sur $I =]-2; +\infty[$.

2.
$$f(x) = x^3 - 3x^2 + 4x - 1$$
 sur $I = \mathbb{R}$.

5.
$$f(x) = 10 - 4e^{2x} \text{ sur } I = \mathbb{R}.$$

3.
$$f(x) = 3e^{-0.1x} + 3 \text{ sur } I = \mathbb{R}$$

Exercice 8 (Variations) Soit h la fonction définie sur I = [-2; 2] par $h(x) = \frac{x}{x^2 + 1}$.

1. Justifier que, pour tout
$$x \in I$$
, $h'(x) = \frac{1-x^2}{(x^2+1)^2}$.

2. Étudier le signe de
$$h'(x)$$
 puis dresser le tableau de variations de h sur $[-2; 2]$, en précisant les extrema.

Exercice 9 (Variations)

Dans chaque cas, on considère une fonction f définie sur un intervalle I. Construire le tableau de variations de f sur I.

1.
$$f(x) = \frac{1}{3}x^3 - x^2 - 3x + 1$$
 2. $f(x) = \frac{2x - 1}{x^2 + 1}$ sur $I = [-3, 6]$. sur $I = [-2, 4]$.

2.
$$f(x) = \frac{2x-1}{x^2+1}$$

sur $I = [-2; 4]$.

3.
$$f(x) = 2x e^{-x}$$

sur $I = [-5; 5]$.

Exercice 10 (Variations)

Étudier dans chaque cas les variations de la fonction f sur \mathbb{R} (déjà dérivée dans l'exercice 4).

1.
$$f(x) = (2x+1)e^{-0.5x}$$

2.
$$f(x) = (0.5x - 1)e^{3x+1}$$

3.
$$f(x) = \frac{x+1}{e^{2x}}$$

Exercice 11 (Tangente)

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{x^3 + x^2}$.

- 1. Dresser le tableau de variations de f.
- 2. Déterminer l'équation réduite de la tangente à la courbe représentative sur f au point d'abscisse -1.

Exercice 12 (Tangente)

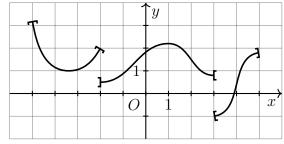
Dans chaque cas, déterminer l'équation de la tangente à la courbe de f au point d'abscisse a.

1.
$$f(x) = \frac{4x+1}{e^x}$$
; $a = 0$

2.
$$f(x) = x^3 + 4x^2 - 1$$
; $a = 1$

Exercice 13 (Continuité)

On considère une fonction f définie sur [-5; 5] dont la courbe représentative \mathscr{C} est la suivante : La fonction est-elle continue :



- 1. En 3?
- 2. En 1?
- 3. sur [-3; 3]?
- 4. sur]-2;3[?]
- 5. sur [-5; 2]?

Exercice 14 (TVI)

On considère une fonction f continue dont on donne ci-dessous le tableau de variations :

x	-10	-5	1	2	4	5
f(x)	3 _	0	* -2 ⁻	0	→ ² <	1

On pourra répondre aux questions suivantes sans justifier.

- 1. Quel est le nombre de solutions de l'équation f(x) = -1?
- 2. Quel est le nombre de solutions de l'équation f(x) = 1?
- 3. Établir le tableau de signes de la fonction f.

Exercice 15 (TVI)

Soit g la fonction définie sur [-3; 6] par : $g(x) = \frac{1}{3}x^3 - x - 8$.

- 1. Dresser le tableau de variations de la fonction g.
- 2. Démontrer que l'équation g(x) = 0 admet une solution unique α dans l'intervalle [-3; 6]. Déterminer un encadrement de α au millième près.
- 3. En déduire le tableau de signes de g sur [-3; 6].

Exercice 16 (TVI)

Soit f la fonction définie sur [-2; 2] par : $f(x) = x^3 - 0.5x^2 - 2x + 3$.

- 1. Dresser le tableau de variations de la fonction f.
- 2. Déterminer, en justifiant, le nombre de solution des équations suivantes :

(a)
$$f(x) = 3$$

(b)
$$f(x) = 1$$

(c)
$$f(x) = 6$$

Exercice 17 (TVI)

Soit f la fonction définie sur [-2; 1] par : $f(x) = e^{3x} - 3x + 1$.

- 1. Dresser le tableau de variations de la fonction f.
- 2. Déterminer, en justifiant, le nombre de solutions de l'équation f(x) = 3 sur [-2; 1].
- 3. Donner une valeur approchée au centième de chacune des solutions de l'équation f(x) = 3.

Exercice 18 (TVI)

Démontrer que l'équation $x^3 - 3x^2 - 1 = 0$ admet une unique solution dans \mathbb{R} et encadrer celle-ci par deux entiers consécutifs.

Indication : trouver un intervalle [a;b] dans lequel se trouve cette solution, le démontrer, puis démontrer qu'il n'en existe pas au-delà.

Exercice 19 (TVI)

Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{e^x}{x}$.

L'équation f(x) = 1 admet-elle des solutions? Justifier.

Exercice 20 (TVI)

On donne ci-contre le tableau de variations d'une fonction f. Déterminer, suivant la valeur du réel k, le nombre de solutions de l'équation f(x) = k.

x	-5	1	7
f(x)	3 _	_2	5

Exercice 21 (TVI – prix d'équilibre)

Un éditeur spécialisé en ouvrages d'art diffuse, sur une année, 22 000 livres dont les prix varient de 15 à $75 \in$. On estime que les fonctions d'offre f et de demande g sont définies sur [15; 75] par :

$$f(x) = 55.8x + 1340$$
 et $g(x) = -0.03x^3 + 5x^2 - 300x + 8790$

où x est le prix d'un livre, en euro.

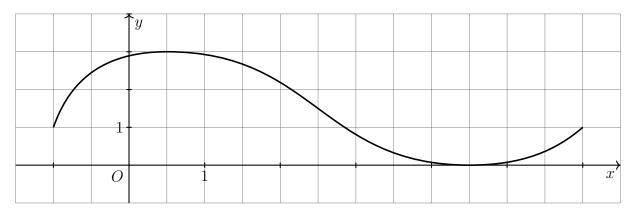
Cela signifie que lorsqu'un livre coûte x euro, l'éditeur est prêt à vendre f(x) livres et les consommateurs sont prêts à acheter g(x) livres.

- 1. (a) Calculer f(30) et g(30). Interpréter les valeurs obtenues. L'offre est-elle supérieure à la demande?
 - (b) Mêmes questions avec f(50) et g(50).
- 2. Étudier les variations de f sur [15, 75]. Interpréter.
- 3. Étudier les variations de g sur [15,75]. Interpréter.
- 4. On appelle **prix d'équilibre** le prix pour lequel l'offre est égale à la demande. Après avoir justifié que l'équation f(x) = g(x) admet une unique solution x_0 sur [15;75], déterminer, à l'aide de la calculatrice, une valeur approchée de x_0 , arrondie au centime d'euro près.

Quelles sont alors l'offre et la demande? Arrondir à l'unité.

Exercice 22 (Convexité – graphique)

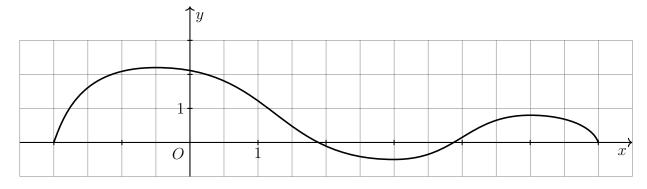
Soit f la fonction dérivable sur [-1;6] dont la courbe représentation \mathcal{C}_f est donnée ci-dessous.



- 1. Étudier (graphiquement) la convexité de f sur [-1;6].
- 2. Déterminer le(s) point(s) d'inflexion.

Exercice 23 (Convexité – graphique)

Soit g la fonction dérivable sur [-2;6] dont la courbe représentation \mathcal{C}_q est donnée ci-dessous.



- 1. Étudier (graphiquement) la convexité de g sur [-2; 6].
- 2. Déterminer le(s) point(s) d'inflexion.

Exercice 24 (Convexité – relation avec la dérivée)

Reprendre les deux exercices précédents et indiquer les variations de la fonction dérivée

Exercice 25 (Convexité – relation avec la dérivée)

On considère quatre fonctions dérivables f, g, h et k, dont on donne ci-dessous les tableaux de variations, ainsi que ceux de leurs dérivées.

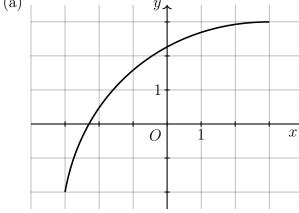
	,	1
x	-3	3
f'(x)		<i></i>
f(x)	-2	3

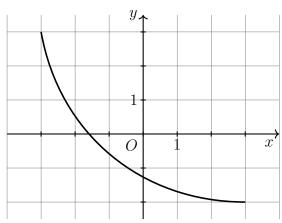
x	-3	3
g'(x)		
g(x)	-2	, 3

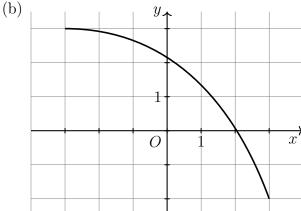
x	-3	3
h'(x)		
h(x)	3	-2

x	-3	3
k'(x)		×
k(x)	3	-2

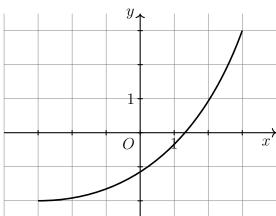
1. Les courbes de ces fonctions sont données ci-dessous. Associer fonctions et courbes, en justifiant.







(d)



2. Préciser la convexité des fonctions f, g, h et k.

Exercice 26 (Convexité – calculs)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4 - 3x^3 - 6x^2$.

- 1. Calculer f''(x) et étudier son signe.
- 2. Étudier la convexité de f sur \mathbb{R} .

Exercice 27 (Convexité – calculs)

Soit f la fonction définie sur [1; 5] par $f(x) = \frac{3}{x+2}$.

1. Étudier les variations de f.

2. Étudier la convexité de f.

Exercice 28 (Convexité - calculs)

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-5x+1}$.

- 1. Déterminer le signe de f
- 2. Déterminer les variations de f
- 3. Déterminer la convexité de f.

- 4. Déterminer le signe de f'
- 5. Déterminer les variations de f'
- 6. Déterminer la convexité de f'.

Exercice 29 (Convexité – calculs)

Soient les fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = 0.5x^2 + 2x - 1$$
 et $g(x) = -0.5x^2 - x + 3.5$

1. Étant donné que ces deux fonctions sont polynomiales de degré 2, indiquer l'apparence de leurs courbes représentatives en justifiant.

Conjecturer alors la convexité de ces deux fonctions.

- 2. (a) Calculer f'(x) puis f''(x).
 - (b) Calculer g'(x) puis g''(x).
 - (c) Démontrer alors les conjectures précédentes.

Exercice 30 (Convexité - calculs)

Soit f la fonction définie sur [-1;8] par $: f(x) = \frac{5x}{(x+2)^2}$.

On admet les résultats suivants :

$$f'(x) = -5 \times \frac{x-2}{(x+2)^2}$$
 et $f''(x) = 10 \times \frac{x-4}{(x+2)^4}$

- 1. Étudier le signe de f''(x) sur [-1; 8].
- 2. Déterminer la convexité de f.
- 3. Déterminer le(s) point(s) d'inflexion de la courbe représentative de f.

Exercice 31 (Convexité – calculs)

Déterminer la convexité des fonctions suivantes, définies sur $\mathbb R$:

1.
$$f(x) = x^4 - 3x + 2$$

3.
$$f(x) = -2x^2 + 3$$

2.
$$f(x) = 10 e^{-0.5x} + 2$$

4.
$$f(x) = -5e^{3x} + 4$$

Exercice 32 (Convexité – calculs)

Déterminer la convexité des fonctions suivantes, définies sur \mathbb{R} . Préciser leur(s) point(s) d'inflexion.

1.
$$f(x) = x^3 - 3x + 5$$

2.
$$f(x) = e^x - \frac{1}{2}x^2$$

3.
$$f(x) = (x-1)^3 + 2$$

4.
$$f(x) = \frac{1}{x^2 + 1}$$

5.
$$f(x) = e^{-x^2}$$

6.
$$f(x) = x e^{-x}$$