Devoir surveillé n°2 Correction

Exercice 1

1. On a $f(x) = 2x^2 - 5x + 3$ qui est du second degré.

On calcule: $\Delta = (-5)^2 - 4 \times 2 \times 3 = 25 - 24 = 1 = 1^2 > 0$.

f a donc deux racines : $x_1 = \frac{-(-5) - 1}{2 \times 2} = \frac{5 - 1}{4} = 1$ et $x_2 = \frac{5 + 1}{4} = \frac{3}{2}$.

De plus, a = 2 > 0, donc on obtient

x	$-\infty$		1		$\frac{3}{2}$		$+\infty$
signe de $f(x)$		+	0	_	0	+	

- 2. On a $g(x) = \frac{-3x^2 + 2x 1}{5 2x}$ qui est une fraction.
 - Le numérateur, $-3x^2 + 2x 1$ est du second degré. On calcule donc $\Delta = 2^2 - 4 \times (-3) \times (-1) = 4 - 12 = -8 < 0$. Donc l'expression n'a pas de racine et est toujours du signe de a = -3, donc négative.
 - Le dénominateur, 5-2x est affine, donc on résout :

$$5 - 2x > 0 \Leftrightarrow 5 > 2x$$
$$\Leftrightarrow \frac{5}{2} > x$$
$$\Leftrightarrow x < \frac{5}{2}$$

Par conséquent :

x	$-\infty$		$\frac{5}{2}$		$+\infty$
$-3x^2 + 2x - 1$		_		_	
5-2x		+	0	_	
signe de $g(x)$		_		+	

Exercice 2

On a $h(x) = \frac{x-1}{x^2+3}$, donc h est de la forme $\frac{u}{v}$, avec u(x) = x-1 et $v(x) = x^2+3$.

Alors
$$u'(x) = 1$$
 et $v'(x) = 2x$. Or $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$, donc :

$$h'(x) = \frac{1(x^2 + 3) - (x - 1)(2x)}{(x^2 + 3)^2} = \frac{x^2 + 3 - 2x^2 + 2x}{(x^2 + 3)^2} = \frac{-x^2 + 2x + 3}{(x^2 + 3)^2}.$$

- Le dénominateur, $(x^2+3)^2$, est un carré, donc toujours positif.
- Le numérateur, $-x^2 + 2x + 3$, est une expression polynomiale de degré 2.

On calcule: $\Delta = 2^2 - 4 \times (-1) \times 3 = 4 + 12 = 16 = 4^2 > 0$. Il y a donc deux racines: $x_1 = \frac{-2 - 4}{2 \times (-1)} = \frac{-6}{-2} = 3$ et $x_2 = \frac{-2 + 4}{-2} = -1$.

De plus, a = -1 < 0.

Par conséquent, on obtient le tableau suivant :

x	-4		-1		3		4
$-x^2 + 2x + 3$		_	0	+	0	_	
$(x^2+3)^2$		+		+		+	
signe de $h'(x)$		_	0	+	0	_	
variations de h	$-\frac{5}{19}$	•	$-\frac{1}{2}$		$\frac{1}{6}$		$\frac{3}{19}$

Exercice 3

1. On a
$$f(x) = (7 - 4x) e^{-2x}$$
, donc f est de la forme uv avec $u(x) = 7 - 4x$ et $v(x) = e^{-2x}$.
Alors $u'(x) = -4$ et $v'(x) = -2 e^{-2x}$ (forme $w' e^w$).

Or
$$(uv)' = u'v + uv'$$
 donc $f'(x) = -4e^{-2x} + (7-4x)(-2e^{-2x})$.

On factorise :
$$f'(x) = e^{-2x}(-4 - 2(7 - 4x)) = e^{-2x}(-4 - 14 + 8x) = e^{-2x}(8x - 18)$$
.

Or
$$2(4x-9) = 8x - 18$$
, donc on a bien $f'(x) = 2e^{-2x}(4x-9)$.

- 2. f' est sous la forme d'un produit, avec :
 - 2 > 0
 - e^{-2x} toujours positive (c'est une exponentielle)

•
$$4x - 9 > 0 \Leftrightarrow 4x > 9 \Leftrightarrow x > \frac{9}{4}$$

Ainsi:

x	0		$\frac{9}{4}$		4
$2 e^{-2x}$		+		+	
4x - 9		_	0	+	
signe de $f'(x)$		_	0	+	
variations de f	7		-0,022		-0,003

- 3. Étudions la situation sur les deux intervalles :
 - Sur $\left[\frac{9}{4};4\right]$: f est strictement négative (maximum égal environ à -0,003), donc l'équation f(x) = 0 n'a pas de solution. • Sur $\left[0; \frac{9}{4}\right]$:
 - - * f est continue car dérivable;
 - * f est strictement décroissante;

*
$$f(0) = 7 > 0$$
 et $f\left(\frac{9}{4}\right) \simeq -0.022 < 0$.

Alors, d'après le TVI, l'équation f(x) = 0 admet une unique solution. Conclusion, l'équation f(x) = 0 admet une unique solution α sur [0; 4].