Dérivation

Ĺ		
•	- 1	

Fonction	Dérivée
$f(x) = k \text{ sur } \mathbb{R}$	$f'(x) = 0 \text{ sur } \mathbb{R}$
$f(x) = x \text{ sur } \mathbb{R}$	$f'(x) = 1 \text{ sur } \mathbb{R}$
$f(x) = x^n \text{ sur } \mathbb{R}$	$f'(x) = nx^{n-1} \text{ sur } \mathbb{R}$
$f(x) = \sqrt{x} \sup [0; +\infty[$	$f'(x) = \frac{1}{2\sqrt{x}} \text{ sur }]0; +\infty[$
$f(x) = \frac{1}{x} \text{ sur } \mathbb{R}^{\star}$	$f'(x) = -\frac{1}{x^2} \text{ sur } \mathbb{R}^*$
$f(x) = e^x \text{ sur } \mathbb{R}$	$f'(x) = e^x \operatorname{sur} \mathbb{R}$
$f(x) = \ln(x) \text{ sur } \mathbb{R}$	$f'(x) = \frac{1}{x} \operatorname{sur} \mathbb{R}$

Soit u et v deux fonctions dérivables sur un même intervalle I.

• (u+v) est dérivable sur I et

$$(u+v)' = u' + v'$$

• uv est dérivable sur I et

$$(uv)' = u'v + uv'$$

• Cas particulier, si v(x) = k (v est constante égale à $k, k \in \mathbb{R}$),

$$(ku)' = ku'$$

• $\frac{u}{v}$ est dérivable pour tout $x \in I$ tel que $v(x) \neq 0$ et

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

• Cas particulier, si u(x) = 1, on a u'(x) = 0 et donc

$$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$$

• e^u est dérivable et

$$(e^u)' = u' e^u$$

• $\ln(u)$ est définie et dérivable en tout $x \in I$ tel que où u(x) > 0, et

$$(\ln(u))' = \frac{u'}{u}$$