
The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

The DemoNat project

Patrick Thévenon

patrick.thevenon@univ-savoie.fr

LAMA, Université de Savoie

Le Bourget-du-Lac

31 Mars 2006

LIX, Ecole polytechnique

Palaiseau

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

Introduction

The Restricted language

The grammar

The interpretation

The justi�cation

The prover

Resolution

Decomposition rules

Strategies

The ACGs

The calculus

The principal typing

Fragments

Conclusion

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

Introduction

• Aim of the projet :
I Analyse and validate proofs in natural language

• Interest :
I Teaching
I Simplicity

• Teams involved in the projet :
I Lattice/Talana (Jussieu)
I Calligramme (Nancy)
I LAMA (Chambéry)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

Introduction

• Aim of the projet :
I Analyse and validate proofs in natural language

• Interest :
I Teaching
I Simplicity

• Teams involved in the projet :
I Lattice/Talana (Jussieu)
I Calligramme (Nancy)
I LAMA (Chambéry)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

Introduction

• Aim of the projet :
I Analyse and validate proofs in natural language

• Interest :
I Teaching
I Simplicity

• Teams involved in the projet :
I Lattice/Talana (Jussieu)
I Calligramme (Nancy)
I LAMA (Chambéry)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

Introduction

• Aim of the projet :
I Analyse and validate proofs in natural language

• Interest :
I Teaching
I Simplicity

• Teams involved in the projet :
I Lattice/Talana (Jussieu)
I Calligramme (Nancy)
I LAMA (Chambéry)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

The system

Translation Automatic prover

Proof in
natural

Language

Proof

validated
Proof in

language
a restricted

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

My work in this project

• Practical :
I De�nition of a restricted language
I Implementation of a prover

• Theoretical :
I ACGs and principal typing with two arrows
I Study of a logic system observed from the prover

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

My work in this project

• Practical :
I De�nition of a restricted language
I Implementation of a prover

• Theoretical :
I ACGs and principal typing with two arrows
I Study of a logic system observed from the prover

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

My work in this project

• Practical :
I De�nition of a restricted language
I Implementation of a prover

• Theoretical :
I ACGs and principal typing with two arrows
I Study of a logic system observed from the prover

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The Restricted language

• Aim :
I Describes a proof
I Uses a small grammar
I Allows to give hints to the prover

• Features :
I Describes a tree of logical rules
I The grammar itself is independant from the logic

• Treatment :
I Linked to a current goal
I To each rule is associated a "trivial" goal
I The nexts goals are given to the user

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The Restricted language

• Aim :
I Describes a proof
I Uses a small grammar
I Allows to give hints to the prover

• Features :
I Describes a tree of logical rules
I The grammar itself is independant from the logic

• Treatment :
I Linked to a current goal
I To each rule is associated a "trivial" goal
I The nexts goals are given to the user

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The Restricted language

• Aim :
I Describes a proof
I Uses a small grammar
I Allows to give hints to the prover

• Features :
I Describes a tree of logical rules
I The grammar itself is independant from the logic

• Treatment :
I Linked to a current goal
I To each rule is associated a "trivial" goal
I The nexts goals are given to the user

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The Restricted language

• Aim :
I Describes a proof
I Uses a small grammar
I Allows to give hints to the prover

• Features :
I Describes a tree of logical rules
I The grammar itself is independant from the logic

• Treatment :
I Linked to a current goal
I To each rule is associated a "trivial" goal
I The nexts goals are given to the user

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The grammar (a bit simpli�ed) 1

nc

ncs
BY ... (WITH ...) ncs
PROVE FORM nc MYIN nc
BYABSURD HYPNAME nc
SET EQUAL nc
LABEL HYPNAME

ncs

DEDUCE FORM nc
TRIVIAL
meta

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The grammar (a bit simpli�ed) 2

meta

LET CST meta
SEARCH VAR meta
ASSUME FORM meta
SHOW FORM nc SHOWN
meta MYTHEN meta
PBEGIN meta PEND
PROOF nc ENDPROOF

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The interpretation

BY ... (WITH ...) : given as hints to the prover

PROVE FORM : the (valid) cut rule

DEDUCE FORM : FORM is proved

TRIVIAL : the current goal is proved

LET CST : a new constant added

SEARCH VAR : a new variable added

SHOW FORM : FORM implies the current goal

THEN : a new premiss for the rule

PBEGIN (...) PEND : parenthesis

PROOF (...) ENDPROOF : proof of the current premiss

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The justi�cation

• For each rule a formula is computed that justi�es it
I Share variables as much as possible
I If no goal has changed, don't use the goal formula in

the formula

• Formulas given with BY and WITH if not hypothesis
I Are �rst proved
I Are used as hints for the prover
I Are forgotten in the next goals

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The justi�cation

• For each rule a formula is computed that justi�es it
I Share variables as much as possible
I If no goal has changed, don't use the goal formula in

the formula

• Formulas given with BY and WITH if not hypothesis
I Are �rst proved
I Are used as hints for the prover
I Are forgotten in the next goals

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The grammar
The interpretation
The justi�cation

The prover

The ACGs

Conclusion

The justi�cation

• For each rule a formula is computed that justi�es it
I Share variables as much as possible
I If no goal has changed, don't use the goal formula in

the formula

• Formulas given with BY and WITH if not hypothesis
I Are �rst proved
I Are used as hints for the prover
I Are forgotten in the next goals

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

The prover as a functor

module Prover : functor (Logic : Logic) − >
sig

Exception Prove_fails

val prove : (formula * int * constraints) list

− > formula

− > unit

(* raises Prove_fails when no proof is found *)

end

To have a prover :

I give a logic

I apply the functor to it.

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

The prover as a functor

module Prover : functor (Logic : Logic) − >
sig

Exception Prove_fails

val prove : (formula * int * constraints) list

− > formula

− > unit

(* raises Prove_fails when no proof is found *)

end

To have a prover :

I give a logic

I apply the functor to it.

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Logic required

module type Logic =

sig

type formula (form)

val elim_all_neg : form − > form

. . .

type substitution (subs)

type constraints (csts)

val unif : csts − > form − > csts − > form − >
int * subs * csts * form * form list

val get_rules : csts − > form − > bool − >
(string * int * subs * csts * form list) list

end

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Resolution

• Principle : Finding a contradiction in a set of clauses

(set of disjonctive formulas)

• Two rules
I Resolution rule

C1, L1 C2, L2 σ = mgu(L1, L2)
res

C1σ,C2σ

I Contraction rule

C1, L1, L2 σ = mgu(L1, L2)
contr

C1σ, L1σ

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Decomposition rules 1

•• Problem : how to compute a set of clauses from a

formula ?

• We don't want to decompose everything when we have

F → F to prove

• The idea :
I use decomposition rules
I clauses are sets of formulas

(not necessarily atomic formulas)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Decomposition rules 1

• Problem : how to compute a set of clauses from a

formula ?

• We don't want to decompose everything when we have

F → F to prove

• The idea :
I use decomposition rules
I clauses are sets of formulas

(not necessarily atomic formulas)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Decomposition rules 1

• Problem : how to compute a set of clauses from a

formula ?

• We don't want to decompose everything when we have

F → F to prove

• The idea :
I use decomposition rules
I clauses are sets of formulas

(not necessarily atomic formulas)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Decomposition rules 1

• Problem : how to compute a set of clauses from a

formula ?

• We don't want to decompose everything when we have

F → F to prove

• The idea :
I use decomposition rules
I clauses are sets of formulas

(not necessarily atomic formulas)

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Decomposition rules 2

Exple : Let {¬F , Γ} be a clause with F = (A→ B)
From F ↔ (A→ B) we obtain two clauses :

{A, Γ} and {¬B, Γ}
It can be seen as resolutions with the following clauses

on the literal F ≡ X1 → X2 :

{X1,X1 → X2} and {¬X2,X1 → X2}
→ Decomposing is making resolution with rule clauses.

→ get_rules asks for each formula which rules can be

applied.

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Strategies

• Weights on each clause, computed from variables such

as size of clauses, size of uni�cations, ...

• Deletion of subsumed clauses and tautologies

• Kind of negative (positive) hyper-resolution

• Splitting without splitting : adding propositionnal

(splitting) variables attached to clause parts in order to

split clauses

→ OL-deduction for clauses of splitting variables

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Strategies

• Weights on each clause, computed from variables such

as size of clauses, size of uni�cations, ...

• Deletion of subsumed clauses and tautologies

• Kind of negative (positive) hyper-resolution

• Splitting without splitting : adding propositionnal

(splitting) variables attached to clause parts in order to

split clauses

→ OL-deduction for clauses of splitting variables

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Strategies

• Weights on each clause, computed from variables such

as size of clauses, size of uni�cations, ...

• Deletion of subsumed clauses and tautologies

• Kind of negative (positive) hyper-resolution

• Splitting without splitting : adding propositionnal

(splitting) variables attached to clause parts in order to

split clauses

→ OL-deduction for clauses of splitting variables

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Strategies

• Weights on each clause, computed from variables such

as size of clauses, size of uni�cations, ...

• Deletion of subsumed clauses and tautologies

• Kind of negative (positive) hyper-resolution

• Splitting without splitting : adding propositionnal

(splitting) variables attached to clause parts in order to

split clauses

→ OL-deduction for clauses of splitting variables

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

Resolution
Decomposition
rules
Strategies

The ACGs

Conclusion

Strategies

• Weights on each clause, computed from variables such

as size of clauses, size of uni�cations, ...

• Deletion of subsumed clauses and tautologies

• Kind of negative (positive) hyper-resolution

• Splitting without splitting : adding propositionnal

(splitting) variables attached to clause parts in order to

split clauses

→ OL-deduction for clauses of splitting variables

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The Abstract Categorial Grammars

• De�nition
I Two signatures (set of typed constants)
I a lexicon L, morphism between the two signatures

• Used for translation between :
I abstract syntax and concrete syntax
I abstract syntax and semantics
I ...

• Condition on the lexicon :

L(c) : L(τ(c))

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The Abstract Categorial Grammars

• De�nition
I Two signatures (set of typed constants)
I a lexicon L, morphism between the two signatures

• Used for translation between :
I abstract syntax and concrete syntax
I abstract syntax and semantics
I ...

• Condition on the lexicon :

L(c) : L(τ(c))

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The Abstract Categorial Grammars

• De�nition
I Two signatures (set of typed constants)
I a lexicon L, morphism between the two signatures

• Used for translation between :
I abstract syntax and concrete syntax
I abstract syntax and semantics
I ...

• Condition on the lexicon :

L(c) : L(τ(c))

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The Abstract Categorial Grammars

• De�nition
I Two signatures (set of typed constants)
I a lexicon L, morphism between the two signatures

• Used for translation between :
I abstract syntax and concrete syntax
I abstract syntax and semantics
I ...

• Condition on the lexicon :

L(c) : L(τ(c))

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Using ACGs

• The user gives
I The two signatures :

1. The constants
2. The types of the constants

I The lexicon L :

1. the mapping of the constants
2. nothing more

• An algorithm has to :
I �nd the whole lexicon (mapping on types)
I Reverse the lexicon (not injective)

• Thanks to the condition on the lexicon

the mapping on types can be found thanks

to a principal type algorithm

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Using ACGs

• The user gives
I The two signatures :

1. The constants
2. The types of the constants

I The lexicon L :

1. the mapping of the constants
2. nothing more

• An algorithm has to :
I �nd the whole lexicon (mapping on types)
I Reverse the lexicon (not injective)

• Thanks to the condition on the lexicon

the mapping on types can be found thanks

to a principal type algorithm

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Using ACGs

• The user gives
I The two signatures :

1. The constants
2. The types of the constants

I The lexicon L :

1. the mapping of the constants
2. nothing more

• An algorithm has to :
I �nd the whole lexicon (mapping on types)
I Reverse the lexicon (not injective)

• Thanks to the condition on the lexicon

the mapping on types can be found thanks

to a principal type algorithm

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Using ACGs

• The user gives
I The two signatures :

1. The constants
2. The types of the constants

I The lexicon L :

1. the mapping of the constants
2. nothing more

• An algorithm has to :
I �nd the whole lexicon (mapping on types)
I Reverse the lexicon (not injective)

• Thanks to the condition on the lexicon

the mapping on types can be found thanks

to a principal type algorithm

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Using ACGs

• The user gives
I The two signatures :

1. The constants
2. The types of the constants

I The lexicon L :

1. the mapping of the constants
2. nothing more

• An algorithm has to :
I �nd the whole lexicon (mapping on types)
I Reverse the lexicon (not injective)

• Thanks to the condition on the lexicon

the mapping on types can be found thanks

to a principal type algorithm

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Problem

The signatures are all based on the same calculus

Initialy ACGs were based on linear lambda calculus

The linear lambda calculus, useful while dealing with syntax,

is limited in its expressiveness for semantics where one needs

to write formulas using several occurences of a variable

So a calculus with two kind of arrows and variables was

de�ned

While computing a principal type some problems appear

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Problem

The signatures are all based on the same calculus

Initialy ACGs were based on linear lambda calculus

The linear lambda calculus, useful while dealing with syntax,

is limited in its expressiveness for semantics where one needs

to write formulas using several occurences of a variable

So a calculus with two kind of arrows and variables was

de�ned

While computing a principal type some problems appear

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Problem

The signatures are all based on the same calculus

Initialy ACGs were based on linear lambda calculus

The linear lambda calculus, useful while dealing with syntax,

is limited in its expressiveness for semantics where one needs

to write formulas using several occurences of a variable

So a calculus with two kind of arrows and variables was

de�ned

While computing a principal type some problems appear

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Problem

The signatures are all based on the same calculus

Initialy ACGs were based on linear lambda calculus

The linear lambda calculus, useful while dealing with syntax,

is limited in its expressiveness for semantics where one needs

to write formulas using several occurences of a variable

So a calculus with two kind of arrows and variables was

de�ned

While computing a principal type some problems appear

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Problem

The signatures are all based on the same calculus

Initialy ACGs were based on linear lambda calculus

The linear lambda calculus, useful while dealing with syntax,

is limited in its expressiveness for semantics where one needs

to write formulas using several occurences of a variable

So a calculus with two kind of arrows and variables was

de�ned

While computing a principal type some problems appear

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Problem

The signatures are all based on the same calculus

Initialy ACGs were based on linear lambda calculus

The linear lambda calculus, useful while dealing with syntax,

is limited in its expressiveness for semantics where one needs

to write formulas using several occurences of a variable

So a calculus with two kind of arrows and variables was

de�ned

While computing a principal type some problems appear

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The calculus 1

Γ; ` c : τ(c)

Γ; x : γ ` x : γ Γ, x : γ; ` x : γ

Γ;∆, x : α ` t : β

Γ;∆ ` λ◦x .t : α (β

Γ, x : α;∆ ` t : β

Γ;∆ ` λx .t : α → β

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The calculus 2

Γ;∆1 ` t : α (β Γ;∆2 ` u : α
(∗)

Γ;∆1,∆2 ` (t u) : β

Γ;∆ ` t : α → β Γ; ` u : α

Γ;∆ ` (t u) : β

(∗) Dom(∆1) ∩ Dom(∆2) = ∅

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The principal typing

• We need a typing rule scheme

Γ;∆ ` t : α−?nβ Γ; ` u : α

Γ;∆ ` (t u) : β

• usual typing algorithm (Damas-Milner) with constraints
while typing application (u v) :

I if v has free linear variables u must have type (
I overwise we take a new unspeci�ed arrow −? to type u

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The principal typing

• We need a typing rule scheme

Γ;∆ ` t : α−?nβ Γ; ` u : α

Γ;∆ ` (t u) : β

• usual typing algorithm (Damas-Milner) with constraints
while typing application (u v) :

I if v has free linear variables u must have type (
I overwise we take a new unspeci�ed arrow −? to type u

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

• Generally some unspeci�ed arrows are remaining

• If we want to avoid them, there can be some problems

• Example :

let

t = λgλf λ◦xλu.(g (f x) (f λt.(t u)))

its principal type is

` t : (b (b−?1n) →
(((a−?2e) → e) (b) →

((a−?2e) → e) (

a → n

t is neither linear nor η-long

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The arrow property

• a typed term has the arrow property if
I the unspeci�ed arrows are negative
I the intuitionistic arrows are positive

• linear terms have the arrow property

• η-long terms have the arrow property

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The arrow property

• a typed term has the arrow property if
I the unspeci�ed arrows are negative
I the intuitionistic arrows are positive

• linear terms have the arrow property

• η-long terms have the arrow property

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

The arrow property

• a typed term has the arrow property if
I the unspeci�ed arrows are negative
I the intuitionistic arrows are positive

• linear terms have the arrow property

• η-long terms have the arrow property

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 1

• Linear terms :
I Generalize the property :

1. each type variable appearing appears twice
with a positive occurrence
and a negative occurrence

2. the type has the arrow property
3. the unspeci�ed arrows are distinct

I true for terms in β-normal form
I it is stable under β-expansion

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 1

• Linear terms :
I Generalize the property :

1. each type variable appearing appears twice
with a positive occurrence
and a negative occurrence

2. the type has the arrow property
3. the unspeci�ed arrows are distinct

I true for terms in β-normal form
I it is stable under β-expansion

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 1

• Linear terms :
I Generalize the property :

1. each type variable appearing appears twice
with a positive occurrence
and a negative occurrence

2. the type has the arrow property
3. the unspeci�ed arrows are distinct

I true for terms in β-normal form

I it is stable under β-expansion

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 1

• Linear terms :
I Generalize the property :

1. each type variable appearing appears twice
with a positive occurrence
and a negative occurrence

2. the type has the arrow property
3. the unspeci�ed arrows are distinct

I true for terms in β-normal form
I it is stable under β-expansion

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 2

• η-long terms :
I The typing algorithm is adapted to η-long terms

I A notion of justi�cation to each arrow and atomic type
in a principal type is de�ned

I The arrow property is generalized :

1. everything is justi�ed (by justifying terms)
2. if the justifying terms are variables x of λx .u

s.t. x 6∈ u

then the type is an atom a and a is unique
3. unspeci�ed arrow are unique and negative
4. the → are positive

I If t is an η-long term with a negative →
then this arrow can be replaced by a (

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 2

• η-long terms :
I The typing algorithm is adapted to η-long terms
I A notion of justi�cation to each arrow and atomic type

in a principal type is de�ned

I The arrow property is generalized :

1. everything is justi�ed (by justifying terms)
2. if the justifying terms are variables x of λx .u

s.t. x 6∈ u

then the type is an atom a and a is unique
3. unspeci�ed arrow are unique and negative
4. the → are positive

I If t is an η-long term with a negative →
then this arrow can be replaced by a (

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 2

• η-long terms :
I The typing algorithm is adapted to η-long terms
I A notion of justi�cation to each arrow and atomic type

in a principal type is de�ned
I The arrow property is generalized :

1. everything is justi�ed (by justifying terms)
2. if the justifying terms are variables x of λx .u

s.t. x 6∈ u

then the type is an atom a and a is unique
3. unspeci�ed arrow are unique and negative
4. the → are positive

I If t is an η-long term with a negative →
then this arrow can be replaced by a (

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

The calculus
The principal
typing
Fragments

Conclusion

Proofs (very general ideas) 2

• η-long terms :
I The typing algorithm is adapted to η-long terms
I A notion of justi�cation to each arrow and atomic type

in a principal type is de�ned
I The arrow property is generalized :

1. everything is justi�ed (by justifying terms)
2. if the justifying terms are variables x of λx .u

s.t. x 6∈ u

then the type is an atom a and a is unique
3. unspeci�ed arrow are unique and negative
4. the → are positive

I If t is an η-long term with a negative →
then this arrow can be replaced by a (

The DemoNat
project

Patrick
Thévenon

Introduction

The Restricted
language

The prover

The ACGs

Conclusion

Conclusion / Projects

• Practical for the prover :
I Needs constant improvements

functions for weight, data structures, strategies,...
I Has been used by two classical logics

propositional and �rst order
I Will be used in PhoX, proof assistant

developped by C. Ra�alli

• Theoretical :
I In the ACGs :

I Work on the matching problem
I. Cervesato de�ned similar calculus

I Find another proof for the principal typing with
subtypes

I Work on another calculus, with features

I For the prover :
I De�ne a logic system to prove theoretical things

a system between free deduction of M. Parigot
and the calculus of structures of A. Guglielmi

	Introduction
	The Restricted language
	The grammar
	The interpretation
	The justification

	The prover
	Resolution
	Decomposition rules
	Strategies

	The ACGs
	The calculus
	The principal typing
	Fragments

	Conclusion

