
Typing

with

two arrows

Patrick Thévenon, PhD Student

Université de Savoie,Chambéry

Laboratoire de mathématiques,LAMA

DemoNat

• Aim of the DemoNat project :

Analyse, validate proofs in natural language

• Teams working on this project :

– Lattice / TaLaNa (Paris)

– Calligramme (Nancy)

– LaMa (Chambéry)

Proof in

languagenatural

Proof validated

Automatic prover

Proof in
new_command

Translation

Tasks

• Nancy and Paris :

Translation from french to new commands

using the ACGs

• Chambéry :

Definition of new commands

Implementation of a prover designed for this

project

ACGs

Two signatures

• Σ1 : abstract language

• Σ2 : object language

Both are based on linear lambda calculus

L a lexicon from Σ1 to Σ2

L : Σ1 −→ Σ2

The user gives the mapping from constants in

Σ1 to terms in Σ2

The user does not want to give the mapping

from atomic types in Σ1 to types in Σ2.

We would like to automaticaly have the com-

plete lexicon thanks to the condition

L(c) : L(τ(c))

In the case of simply typed linear lambda cal-

culus it is quite easy

It could be interesting to add some more things

to the calculus

• Dealing with semantics, some formulas can

be of the shape ∀xP (x) → Q(x), which is no

more linear. But as we want to keep linea-

rity, we add to linear lambda-calculus intui-

tionistic variables, which introduces a calcu-

lus with two arrows.

• Some features could be added to the ato-

mic types (gender with cases feminine and

masculine for example)

In order to complete the lexicon we need first

to be able to find the principal type of a term

(L(c) for each constant)

In this talk we will only talk about simply typed

lambda calculus with two arrows (linear and in-

tuitionistic), which introduces some problems

for the principal type

Overview

• introduction of the calculus

• the principal typing algorithm

• study of fragments

– linear terms

– η-long terms

The calculus

Γ; ` c : τ(c)

Γ;x : γ ` x : γ Γ, x : γ; ` x : γ

Γ;∆, x : α ` t : β

Γ;∆ ` λ◦x.t : α (β

Γ, x : α;∆ ` t : β

Γ;∆ ` λx.t : α → β

Γ;∆1 ` t : α (β Γ;∆2 ` u : α
(∗)

Γ;∆1,∆2 ` (t u) : β

Γ;∆ ` t : α → β Γ; ` u : α

Γ;∆ ` (t u) : β

(∗) Dom(∆1) ∩ Dom(∆2) = ∅

Typing algorithm

• typing rule scheme

Γ;∆ ` t : α−?nβ Γ; ` u : α

Γ;∆ ` (t u) : β

• unification of types with (, → and −?

first order ⇒ mgu

• usual typing algorithm (Damas-Milner) with

constraints

• the algorithm gives a typing tree

• the principal type is the judgment at the root

Constraints

while typing application (u v)

– if v has free linear variables u must have type

(

– overwise we take a new unspecified arrow −?

to type u

Why do we take
fragments

let

t = λgλfλ◦xλu.(g (f x) (f λt.(t u)))

its principal type is

` t : (b (b−?1n) →

(((a−?2e) → e) (b) →

((a−?2e) → e) (

a → n

t is neither linear nor η-long

Arrow property

• a typed term has the arrow property if

– the unspecified arrows are negative

– the intuitionistic arrows are positive

• linear terms have the arrow property

• η-long terms have the arrow property

Linear terms

• a linear term contains intuitionistic variables

but they must appear once

• constants considered have the

arrow property

Proposition 1 t a typable linear term

then

its principal type satisfies :

– each type variable appearing appears twice

with a positive occurrence

and a negative occurrence

– the type has the arrow property

– the unspecified arrows are distinct

Proof :

– prove it for normal terms

– prove that if t →β t′ then there exists

S s.t. −?i 7→(and s.t. PT(t)=S PT(t′) 2

η-long terms

• to be η-long is a property of a typing tree

• a term is η-long if

it has an η-long typing tree

• if a term is η-long

Then

it is η-long for its principal type

Typing algorithm

the typing algorithm is adapted

• types only terms of shape

– t = (x t1 . . . tn)

– t = (c t1 . . . tn)

– t = λx.u

– t = λ◦x.u

– t = (λx1 . . . xn.t′ t1 . . . tn)

t′ 6= λx.u or λ◦x.u

• succeeds only if the tree is η-long

Address

• adresses c are lists of l (left) and r (right)

– the empty address is []

– c1 :: c2 is the concatenation

– lk is the address with k times l

• f(c, T), T a type, c an address, is

the sub-type at the address c of T

Justification

• we want to justify each arrow and atom

of a principal type

• we define an application ϕ which

– takes

– an address c of a type T

– a set of terms of type T

– gives

a set of subterms with type f(c, T)

• ϕ is generaly defined only for η-long terms

Examples

t = λx.(f (x t1 λy.t3) (x t2 λz.t4))

` t : T = (a → (b → c) → d) → e

• c1 = [l, r] ⇒ f(c1, T) = (b → c) → d

ϕ(c1, {t}) = {(x t1), (x t2)}

• c2 = [l, r, l] ⇒ f(c2, T) = (b → c)

ϕ(c2, {t}) = {λy.t3, λz.t4}

• c3 = [l, r, l, l] = c2 :: l ⇒ f(c3, T) = b

ϕ(c3, {t}) = ϕ([l], {λy.t3, λz.t4})

= {y, z}

Back to typing

While typing t = (x t1 . . . tn)

• get the principal types of the ti

• unify the types of the variables

see that as applying substitutions to

a set of judgments with same free variables

• unify the type of x obtained with the type of

x built with the types of the ti

see that as applying substitutions to

a set of two judgments

Points
in a set of judgments

• a variable point is the choice of

– a judgment

– a free variable of the judgment

– an address in the type of the variable

• a term point is the choice of

– a judgment (a term)

– an address in the type of the term

• What is interesting in a point is the head of

the sub-type designed by the address

Classes
in a set of judgments

• the class of a variable point (t, x, c)

is (l :: c, {λx.ti}) with ti s.t.

x has the same type head at the address c

• the class of a term point (t, c) is (c, {t})

• a class is justified if ϕ is defined

Examples

t1 = λy(x y)

t2 = λwλ◦z(x (w z))

x : a−?b ` t1 : a → b

x : a (b ` t2 : (c (a) → c (b

(t1, x, []), (t1, x, [l]) and (t2, [l, r])

are points whose classes are

([l], {λx.t1}), ([l, l], {λx.t1, λx.t2}) and ([l, r], {t2})

Class property

– the terms have an η-long principal type

– the free variables of the terms are the same

and are free in an η-long term t

– each class Cl is justified

– if the justifying terms are variables x of λx.u

s.t. x 6∈ u then the type is an atom a and a

is unique

– the unspecified arrows are

unique and negative

– the → are positive

Lemma 1 The class property is stable by the

unification of the types of the variables

Proposition

Proposition 2 t a term s.t. the algorithm gives

an η-long typing tree for t

then the root of the tree satisfies

– each point P is justified

– if the justifying terms are variables x of λx.u

s.t. x 6∈ u then the type is an atom a and a

is unique

– unspecified arrow are unique and negative

– the → are positive

Corollary 1 let t η-long term of type T

if T has a negative →

then

this arrow can be replaced by a (

Proof of corollary

the principal type of t is η-long

∃S s.t. SPT=T

PT has no negative arrow →

S changes

– a −? into → :

−? is unique

– a type variable α into a type A containing

→ :

we prove α is unique because it is justified

by variables x of λx.u with x 6∈ u.

Future work

• Proof quite complex, very technical, we would

like to find something more readable. Maybe

there could be a solution with sub-typing

(where (⊂→)

• Solve the matching problem for the calculus

with two arrows

• Add features to atomic types, in order to

avoid the multiplication of entries into the

signatures.

• In the typed calculus with features, find an

algorithm to complete the lexicon

