Proofs using PhoX

and new_command

Patrick Thévenon, PhD Student

Université de Savoie, Chambéry Laboratoire de mathématiques, LAMA

Introduction

- Aim of the **DemoNat** project :
 - Analyse, validade proofs in natural language
- Interests of this project :
 - For students
 - Less theory needed
- Who works on this project :
 - Laboratories of linguistics and mathematics
 - Lattice / TaLaNa (Jussieu)
 - Calligramme (Nancy)
 - LaMa (Chambéry)

New_command : Syntax

let cmd	(naming)
assume { and} cmd	
deduce { and} cmd	
by { with } cmd	(hints)
show	(replace goal)
prove	(cut rule)
trivial	
Ø	
cmd then cmd	(cases)
begin cmd end	(brackets)

New_command : a Meta-rule

$$\mathcal{H} \frac{H_1, \ldots, H_n \vdash B_1 \quad \ldots \quad K_1, \ldots, K_m \vdash B_s}{\vdash B}$$

The translation

 $M,\ N$ topological spaces. $f:M\longrightarrow N$

- 2 notions of continuity :
- global : continous.
- local : continuous_at.

Property :

f continuous $\rightarrow \forall m \in M \ f$ continuous at m. **proof**:

$\vdash f$ continuous

 $\rightarrow \forall m \in M$ f continuous_at m

Assume f is continuous, let $m \in M$.

\Downarrow

assume f continuous let $m \in M$ show f continuous_at m.

finding formal definitions

$$H := f \text{ continuous}$$

$$H0 := M m$$

$$\vdash f \text{ continuous}at m$$

Let V a neighbourhood of f(m), we must prove that **it**'s reverse image is a neighbourhood of m.

\Downarrow

let V assume V neighbourhood.N (f m)show (reverse f V) neighbourhood.M m.

finding assumptions

\Downarrow

by H1 let O assume O open.N and $O \subset V$ and O (f m).

H := f continuous
:
H2 := O open.N
H3 := O ⊂ V
H4 := O (f m)
⊢ (reverse f V) neighbourhood.M m
As f is continuous,
$$f^{-1}(O)$$
 is open
and $m \in f^{-1}(O)$.

 \Downarrow

by f continuous deduce (reverse f O) open.M and (reverse f O) m.

$$\begin{array}{ll} \vdots \\ \mathsf{H3} := & O \subset V \\ \vdots \\ \mathsf{H5} := & (\text{reverse } f \; O) \; \text{open.M} \\ & \land \; (\text{reverse } f \; O) \; m \\ & \vdash \; (\text{reverse } f \; V) \; \text{neighbourhood.M} \; m \\ \end{array}$$

$$\begin{array}{l} \mathbf{As} \; f^{-1}(O) \subset f^{-1}(V), \; \text{the proof is finished.} \end{array}$$

 \Downarrow

deduce (reverse f O) \subset (reverse f V) trivial.

Proofs of formulas

$$\forall i \in I \quad A \cap h(i) = f(i) \Rightarrow A \cap \bigcap_{i \in I} h(i) = \bigcap_{i \in I} f(i)$$

 $E0 := \forall i \in I \quad A \cap h \ i = f \ i$ $\vdash A \cap (Inter \ h \ I) \subset (Inter \ f \ I)$ let $m \in A \cap (Inter \ h \ I)$ show (Inter $f \ I) \ m.$

$$E0 := \forall i \in I \quad A \cap h \ i = f \ i$$

$$\vdash \forall m \ [(A \cap (Inter \ h \ I)) \ m$$

$$\rightarrow (Inter \ f \ I) \ m]$$

$$\rightarrow$$

$$A \cap (Inter \ h \ I) \subset (Inter \ f \ I)$$

F closed, $(x_n)_n \subset F$ $(x_n)_n$ converging to $x0 \to x0 \in F$

:

$$G := \forall V \text{ neighbourhood } x0$$

$$\exists n \in \mathbb{N} \quad V (x \ n)$$

$$H := V \text{ neighbourhood } x0$$

$$\vdash \exists y \ (F \cap V)y$$
by [G] with [H] let $n \in \mathbb{N}$ assume $V (x \ n)$.

\downarrow

:

$$\vdash \forall n \in \mathbb{N} (V (x n) \to \exists y (F \cap V) y)$$

$$\to \exists y (F \cap V) y$$

$$G := \forall V (H[V] \rightarrow \exists n (n \in \mathbb{N} \land V (x n)))$$
$$H := H[V] \rightarrow \forall n (n \in \mathbb{N} \rightarrow V (x n) \rightarrow K) \rightarrow K$$

$$C_1 := \{ \forall V \ (H[V] \to \exists n \ (n \in \mathbb{N} \land V \ (x \ n))) \}$$

$$C_2 := \{H[V]\}$$

$$B := \{ \neg \ [\forall n \ (n \in \mathbb{N} \to V \ (x \ n) \to K) \to K] \}$$

$$\downarrow$$

 $C_{1} := \{ \forall V \ (H[V] \to \exists n \ (n \in \mathbb{N} \land V \ (x \ n))) \}$ $C_{2} := \{H[V]\}$ $C_{3} := \{ \forall n \ (n \in \mathbb{N} \to V \ (x \ n) \to K) \}$ $G := \{ \neg K \}$

\downarrow

 $C'_{1} := \{ (H[V?] \rightarrow \exists n \ (n \in \mathbb{N} \land V? \ (x \ n))) \}$ $C_{2} := \{ H[V] \}$ $C'_{3} := \{ \neg n? \in \mathbb{N} \lor \neg V \ (x \ n?) \lor K) \} \}$ $G := \{ \neg K \}$

$$C_{4} := \{ \exists n \ (n \in \mathbb{N} \land V \ (x \ n)) \}$$
$$C'_{3} := \{ \neg n? \in \mathbb{N} \lor \neg V \ (x \ n?) \lor K) \} \}$$
$$G := \{ \neg K \}$$

\downarrow

 $C'_{4} := \{n \in \mathbb{N} \land V (x n)\} \\ C'_{3} := \{\neg n? \in \mathbb{N} \lor \neg V (x n?) \lor K)\}\} \\ G := \{\neg K\}$

$$C_{5} := \{n \in \mathbf{N}\} \\ C_{6} := \{V (x n)\} \\ C'_{3} := \{\neg n? \in \mathbf{N} \lor \neg V (x n?) \lor K)\}\} \\ G := \{\neg K\}$$

Conclusion

- bests results by reading the whole proof
- Hints given to help the proof
- Inverse resolution method in a lazy way

The link to the project (in french) : http://demonat.linguist.jussieu.fr/

See my page at http://www.lama.univ-savoie.fr/~ thevenon/