
A typed λ-calculus with two arrows

Patrick THÉVENON ∗

May 31, 2007

Abstract

We present a simple typed lambda calculus similar to the one in
[CePfe1], with two kind of arrows, namely linear and intuitionistic, and
two kind of variables and thus of abstractions, but only one application.
As the unique application carries a kind of non determinism, most of
the typable terms do not have a unique principal type. We show that
in some fragments of the calculus (the linear terms and the η-long
terms) we can de�ne a notion of principal type, which is unique, where
negative intuitionistic arrows can be replaced by linear ones. Moreover,
for any typed η-long term one keeps a valid type by applying a type
substitution and replacing negative intuitionistic arrows by linear ones.

Keywords: linear and intuitionistic lambda calculus, principal type

Introduction

We would like to explain in this introduction what gave rise to the λ-calculus
we will introduce, and how the problem studied and the given solution are
justi�ed.
Within the abstract categorial grammars (ACG) introduced by P. de Groote
(cf. [DeG]), it is possible to make translations between two signatures, for
example from a syntactic structure to a semantic structure. Each signature
is based on the same structure, which allows a homogeneous framework.
Basically developed on the linear lambda calculus, useful in linguistics, the
system is limited in its expressivity in particular for semantic, where one
wishes to be able to use several times the same variable.
The idea was then to introduce some intuitionism in the linear lambda cal-
culus and thus to make a lambda-calculus with two kinds of variables and
two kinds of arrows (intuitionistic and linear).
Finding the principal type of terms is needed in the ACGs. Indeed, the
use of the ACGs is the following: two signatures, the abstract signature
and the object signature, are de�ned (cf. [DeG] for more details and formal

∗LAMA, Université de Savoie, FRANCE - e-mail : patrick.thevenon@univ-savoie.fr

1

de�nitions). This means that one gives the constants of each signature, with
their types.
Then the lexicon L is de�ned. In order to give all informations, one has to
give the image of the constants of the abstract signature into the terms in
the object signature, and the image of the abstract atomic types into the
object types.
It must then be checked that the given lexicon satis�es the commutation
property, i.e. that for all term t of type T , L(t) has type L(T). In order to
do that, one has to �nd a principal type of L(t), and check that this type is
more general than L(T).
Because of the undetermined application, we can't have a unique principal
type for most of the terms in this calculus. Then we must introduce some un-
speci�ed arrows (−?), used by the typing algorithm, in order to get a unique
principal type. The unspeci�ed arrows can then be indi�erently replaced
either by intuitionistic arrows (→) or by linear arrows (().
In order to keep a light lambda calculus, one would like to avoid the un-
speci�ed arrows, and to have a notion of unique principal type without these
arrows. In most cases it is impossible, but in the linear case and the η-long
case, we can de�ne a notion of principal type without unspeci�ed arrows.
If the linear case is just an anecdotic example, the η-long terms exist in the
ACGs, when one does syntax analysis. The problem is the following: having
a given objet term u, what are the abstract terms t of type S (where S is a
special type in the abstract signature) such that L(t) = u ?
In a more general case, given Γ an abstract context, v an η-long and β-
normal object term, and an abstract type α, �nd an abstract term t such
that Γ ` t : α and L(t) =βη u.
To solve this problem is to solve a matching problem (that is uni�cation
of equation where the right term has no variable). This problem is NP-
complete, and a semi-algorithm for λ-calculus given by G. Huet (cf. [Hu])
uses η-long forms of the terms. That is why the object term considered is
η-long.

Overview

The calculus will be de�ned in section 1. It can be seen as mixing the
linear lambda calculus and the intuitionistic (standard) one. Each judgement
contains a context in two parts, the linear variables and the intuitionistic
variables. The usual notion of a principal type will also be given.
In general the typable terms do not have a (unique) principal type because
of the non determinism of the application. Thus in section 2 we will give
a di�erent notion of principal type. In this notion, negative intuitionistic
arrows can be replaced by linear ones. We will express the fact that this
principal type is unique for linear and η-long terms, which is the main result

2

of the paper. This will be proved in the following sections, as its proof needs
the introduction of more objects.
The typing algorithm will be described in section 3. It is mainly the Damas-
Milner algorithm, adapted to the existence of two arrows and of the unique
application that implies the use of unspeci�ed arrows. The initial typing
system must then be extended for unspeci�ed arrows. The notion of principal
type in the system obtained is the usual one, except that the unspeci�ed
arrows belong to the domain of the substitutions.
In section 4 we introduce the SNIP property. For typed terms having this
property, it is possible to replace all the unspeci�ed arrows, which are nega-
tive, by intuitionistic ones. In fact the SNIP property induces the notion of
principal type given in the section 2.
In section 5 we will prove the result for linear terms, where all variables, even
intuitionistic, appear exactly once in the terms. The SNIP property needs
to be generalized into another one which is valid for β-reduced terms and is
stable by expansion.
In section 6, we will de�ne a more general property of the SNIP property for
the η-long terms, which is stable by a uni�cation process during the typing.
The main tool for that section is a function that justi�es each atom and
arrow in a principal type, and is well de�ned for η-long terms.

1 The type system

Definition 1.1 (Types) Let A be a set of atomic (constant) types. The
types are de�ned by the following grammar:

β ::= a |α |β(β |β → β

where a belongs to A and α is a type variable. Both a and α are called atoms.
The (arrow is the linear arrow and → is the intuitionisticic arrow.

Note 1.2 We will use the notation to represent any arrow.

Definition 1.3 (Terms) The terms are de�ned by the following grammar:

t ::= c |x |λ◦x.t |λx.t | (t t)

where c belongs to C, a set of constants and x belongs either to Vi, a set of
intuitionistic variables, or to Vl, a set of linear variables. The symbol λ◦ is
the abstraction for linear variables and λ is the abstraction for intuitionistic
variables.

The sets Vi and Vl can be considered disjoint, but in practice we will use the
same notations x, y, z, . . . for all variables. The kind of the variables used
will always be clear from the context.

3

We impose restrictions on linear rules: one can build λ◦x.t only when x is a
linear free variable of t, that is appears exactly once in t. The term (t1 t2) is
built only when the free linear variables of t1 and t2 are disjoint.

Note 1.4 We write (t1 t2 t3 t4) for the term (((t1 t2) t3) t4) and λxy.t for the
term λx.λy.t. We write λ? to represent any abstraction, λ or λ◦.

Definition 1.5 (Typing rules) Let τ be an application that associates
to each constant its type.

1. A typing judgement has the shape [Γ ; ∆] ` t : β, where t is a term and
β the type of t, Γ and ∆ are two disjoint sets of variables declarations
x : τ . The set Γ is the set of intuitionistic variables ∆ is the set of
linear variables.

2. The typing rules are the following:

[Γ ;] ` c : τ(c)

[Γ ; x : γ] ` x : γ [Γ, x : γ ;] ` x : γ

[Γ ; ∆, x : α] ` t : β

[Γ ; ∆] ` λ◦x.t : α(β

[Γ, x : α ; ∆] ` t : β

[Γ ; ∆] ` λx.t : α → β

[Γ ; ∆1] ` t : α(β [Γ ; ∆2] ` u : α
(∗)

[Γ ; ∆1,∆2] ` (t u) : β

[Γ ; ∆] ` t : α → β [Γ ;] ` u : α

[Γ ; ∆] ` (t u) : β

(∗) Dom(∆1) ∩Dom(∆2) = ∅

3. We say that a judgement is valid if it can be derived from the typing
rules. We say that a term is typable if there is a valid judgement of
this term, that is of the shape [Γ ; ∆] ` t : β.

Sometimes the judgements will be written x : τ ` t : θ. This means that
only one variable is considered, even if there are many others, and the fact
that it is linear or intuitionistic has no interest.

Let us give some explanations on these rules. The rules on the left column
are the linear rules, the ones on the right column are the intuitionistic rules.
For variable introductions, the instuitionistic context is allways any set, but
in order to keep the fact that linear variables must appear only once, the

4

linear context is empty when introducing an intuitionistic variable, and only
the introduced variable belongs to the linear context when introducing a
linear variable.
For arrow introductions, there is no particular condition.
For arrow elimination the intuitionistic context is indi�erent, but the same in
each premiss (which explains that there can be any intuitionistic context for
variable introductions). For the linear rule, the conditions on linear context
allow to keep a unique occurrence of each linear variable in the terms. For
the intuitionistic rule, note that the linear context for the right premiss is
empty. The reason is that if t is λx.t′ the term (t u) is then a redex. Reducing
it to t[x := u], one must be sure that no free linear variable of u is duplicated.
As x can appear any times, u must not contain free linear variables.

Remark 1.6 A similar calculus has been introduced by I. Cervesato and
F. Pfenning (cf. [CePfe1]). The main di�erence is that in [CePfe1] there
are two applications and here there is no distinction between linear and in-
tuitionistic application. The reason is that for a user of such a calculus, it
could be tedious in some cases to choose between both applications. This dif-
ference leads to the problem of principal typing, that needs the introduction
of unspeci�ed arrows, as we will see next.

There exists a notion of β-reduction similar to the one in standard lambda-
calculus. Results of strong normalisation come by a straightforward mapping
of the calculus into standard lambda calculus.

The following lemma proves that linearity is preserved by the typing rules:

Lemma 1.7 The terms built from the typing rules verify the restrictions
given on linear terms. More precisely, let [Γ ; ∆] ` t : β be a judgement.
Then

• if t = λ◦x.t′ then x appears freely exactly once in t′

• if ∆ contains a variable x then x appears freely exactly once in t

• if t = (t1 t2) then the free linear variables of t1 and t2 are distincts

Proof: By induction on the size of the tree. 2

Definition 1.8 (Substitution) We call substitution an application S
from type variables into types. We de�ne then S(T) (also denoted ST) The
application of S to a type T . The de�nition is done by induction on the type
complexity:

• S(a) = a;

• S(α) = S(α) de�ned by S;

5

• S(T1 T2) = S(T1) S(T2).

Note that T1 and T2 are equal (up to renaming) if and only if there are two
substitutions S1 and S2 such that S1T1 = T2 and S2T2 = T1.

Definition 1.9 Applying a substitution S to a judgement is applying S to
each of the types of the judgement. Applying a substitution S to a tree is
applying S to each of the judgements of the tree.

Definition 1.10 (Usual principal type) Let t be a term.

• A principal typing tree for t is a tree T such that for every typing tree
T ′ for t there is a substitution S such that ST =T ′.

• The judgement (or indi�erently the type) given to t at the root of a
principal typing tree for t is called a principal type of t.

It is obvious that the principal type of a term t is unique (we will sometimes
write it PT(t)).

In general, typable terms restricted to this type system don't have a (unique)
usual principal type, because the application does not make distinction be-
tween linear and intuitionistic application. We could at best de�ne a set of
principal types.
For example, let us consider the term t := λxy.(x y). This term has for types
(α → β) → α → β and (α(β) → α → β. None is an instance of the other,
and any type of t is an instance of one of these two types.
There are at least two fragments in which it is possible to de�ne a di�erent
notion of principal type, which in this case becomes unique.

2 Fragments with a unique principal type

We �rst need to introduce a notion of polarity in types. It is a common
notion, but our purpose is just to �x notations.

Definition 2.1 (Head of a type - Polarity) Let T be a type.

1. The head of T is de�ned by induction:

• if T = a (resp. α) then the head of T is a (resp. α);

• if T = A B then the head of T is .

2. Let T ′ be a subtype of T . The polarity of T ′ in T is, by induction on
T :

• if T=T ′ then T ′ is positive in T ;

6

• if T = T1 T2 and T ′ is a subtype of T1 (resp. T2) then T ′

is negative in T if T ′ is positive in T1 (resp. negative in T2)
otherwise T ′ is positive in T .

3. Each atom or arrow of T appears as the head of a (unique) subtype T ′

of T . We de�ne the polarity of this atom or arrow in T as the polarity
of T ′ in T .

4. Consider a judgement x : τ ` t : θ. A positive (resp. negative)
subtype in the judgement is a negative (resp. positive) subtype in τ or
a positive (resp. negative) subtype in θ.

Similarly for atoms and arrows in the judgement.

Definition 2.2 (Linear terms) A term t is linear if all variables, free
or bounded, linear or intuitionistic, are used exactly once. Moreover, the
type of the constants must satisfy the fact that the intuitionistic arrows are
all positive.

The last condition on the type of the constants will be explaned later, but
can also be clear from the result on principal type we give in this section.

Definition 2.3 (η-long terms) Let t be a term.

1. Let T be a typing tree for t. T is η-long if its root is in one of the
following cases:

• [Γ ; ∆] ` (x t1 . . . tn) : α where n ≥ 0 and α is an atom (i.e. a
type variable or an atomic type), and the typing tree of each ti is
η-long;

• [Γ ; ∆] ` (c t1 . . . tn) : a where n ≥ 0 and the typing tree of each
ti is η-long;

• [Γ ; ∆] ` λx.t′ : α → β where the typing tree of t′ is η-long;

• [Γ ; ∆] ` λ◦x.t′ : α(β where the typing tree of t′ is η-long;

• [Γ ; ∆] ` (λ?x1 . . . xm.t′ t1 . . . tn) : α where α is an atom, t′ has
not the shape λ?x.u and the typing trees of λ?x1 . . . xm.t′ and tk
are η-long.

2. We say that t is η-long if it has an η-long typing tree.

We can now set out the main theorem of the paper:

Theorem 2.4 Let t be a typable term. Assume t is either linear or η-long.
Then there exists a unique judgement J of t such that any judgement of t is
obtained by using the two following rules:

7

• type variables of J can be substituted by types;

• negative intuitionistic arrows in J can be replaced by linear arrows.

That is, if J ′ is a judgement for t, there is a judgement Jo which is J with
some negative intuitionistic arrows replaced by linear arrows and a substitu-
tion S such that J ′ = SJo.

Proof: it will be given as a corollary of theorem 4.2. 2

This judgement is called the principal type of t. In the example given at the
end of the previous section, the principal type of t is (α → β) → α → β.

3 The typing algorithm

We will mainly use the typing algorithm of Damas and Milner. But there are
changes to do due to the presence of two arrows. While typing an application
(t1 t2), if t2 has no free linear variable it is possible for t1 to have either the
type(or →. Remember that the application is the same in our system for
the linear and the intuitionistic case. Consequently in the typing algorithm
it will be necessary to introduce unspeci�ed arrows. Some of them will be
identi�ed during the process, and other will remain unspeci�ed.

3.1 Unspeci�ed arrows

An unspeci�ed arrow is an arrow variable written −?n (or −? when only
one is considered) that is added to the grammar for the types. It can be
substituted by other arrows, speci�ed or not.
All the de�nitions and properties involving types in the previous sections
can be easily adapted for the unspeci�ed arrows. In particular, we now con-
sider that substitutions have for domain both type variables and unspeci�ed
arrows.
We add to the initial type system the following typing scheme:

[Γ ; ∆] ` t : α−?nβ [Γ ;] ` u : α

[Γ ; ∆] ` (t u) : β

and obtain an extended type system. We will prove in the next section
that the notion of usual principal type is valid in the extended type system.
Obviously, if a term is typable in the initial system then it is typable in the
extended one.

Lemma 3.1 Let T be a type and S be a substitution. Let T ′ be a subtype of
T . Then the polarity of ST ′ in ST is the same as the polarity of T ′ in T .

Proof: By induction on T . 2

8

Lemma 3.2 Let t be a term typed in the extended system, in a typing tree
T .

• Let S be a substitution. Then ST is a typing tree for t.

• Let S be a substitution of domain the unspeci�ed arrows of T and of
image {→, (}. Then ST is a typing tree in the initial system.

Proof: By induction on the size of T . 2

3.2 Uni�cation

Given two types T1 and T2, we wonder if they are uni�able, that is if there
is a substitution S such that ST1 = ST2. We can see this problem as �rst
order uni�cation. Indeed we can see a type as a term written with only
one fonction arrow taking three arguments and constants. For example, the
type

(a → α)−?1(b(β)−?2c

can be seen as

arrow(x1, arrow(int, a, α), arrow(x2, arrow(lin, b, β), c))

Thus the notion of most general uni�er (mgu) exists as in every problem of
�rst order uni�cation. We sometime write U(T1, T2) the mgu of T1 and T2.

3.3 Algorithm 1

Here is a typing algorithm for terms which takes a term for which we know
all the free variables, in particular their kind (linear or intuitionistic), and
returns a typing tree if the term is typable.

Input: a term t for which linear and intuitionistic free variables are given.
Output: a typing tree T for t if it terminates without error.

Algorithm: By induction on the complexity of t.

• If t=x, let α be a type variable then T is

[; x : α] ` x : α if x is linear,

[x : α ;] ` x : α if x is intuitionistic.

• If t=c then t has no free variable and T is

[;] ` c : τ(c)

9

• If t = λx.t′ let T ′ be the typing tree of t′ if it exists. Let T ′′ be T ′ if x
is free in t′ and be T ′ where x : α is added to the intuitionistic side of
each judgement of T (α being a fresh type variable) otherwise. If the
root of T ′′ is [Γ, x : α ; ∆] ` t′ : β then T is

T ′′

[Γ ; ∆] ` λx.t′ : α → β

• If t = λ◦x.t′ let T ′ be the typing tree of t′ if it exists. As the variable x is
free in t′ (it is linear), the root of T ′ as the shape [Γ ; ∆, x : α] ` t′ : β
and T is

T ′

[Γ ; ∆] ` λ◦x.t′ : α(β

• If t = (t1 t2) let T1 and T2 be the typing trees of t1 and t2. We
assume that the type variables are distinct in T1 and T2. Let us write
[Γ1,Γ′

1 ; Σ1] ` t1 : τ the judgement for t1 and [Γ2,Γ′
2 ; Σ2] ` t2 : α

the judgement for t2 where Γ1 and Γ2 are the set of variables in common
of t1 and t2 and Γ′

1 and Γ′
2 are the set of variables not appearing in the

other term.

Let S be the most general uni�er of the types of the common free
variables of t1 and t2. Then SΓ1 = SΓ2. Let T ′

1 be the tree T1 in
which the missing variables Γ′

2 of t2 have been added and let T ′
2 be the

tree T2 in which the missing variables Γ′
1 of t1 have been added. Let β

be a fresh type variable. We unify then Sτ and Sα−?1β where −?1 is
(if t2 contains free linear variables (i.e. if ∆2 is not empty) and is a
fresh unspeci�ed arrow otherwise. We so get (if it exists) S′ the most
general uni�er and T is

S′ST ′
1 S′ST ′

2

S′S([Γ1,Γ′
1,Γ

′
2 ; Σ1,Σ2] ` (t1 t2) : β)

3.4 Algorithm 2

There is also another algorithm which is equivalent to the �rst one, for
which the terms are taken as (we consider always the greatest number of
applications):

• (x t1 . . . tn) n ≥ 0;

• (c t1 . . . tn) n ≥ 0;

• λx.u;

• λ◦x.u;

10

• (u t1 . . . tn) with u an abstraction, n ≥ 1.

This algorithm is the same as the previous one for the abstractions. For the
application of a term t (which can be a variable, a constant or an abstraction)
to n arguments t1,. . . , tn, the algorithm is a bit more complex. However there
are stil the similar successive steps:

• By induction the term and its arguments are typed (for a variable a
new type variable is given);

• The types of the common free variables are uni�ed;

• The type of t is obtained by unifying its type with the type constructed
from the ones of the ti. That is, let β be a new type variable, let Ti

be the types of the ti, then the type constructed is T1 1 . . . Tn n β
where the i are(if ti has linear free variables, and a fresh unspec-
i�ed arrow −?n otherwise.

Remark 3.3 We have to stress the fact that these algorithms are not the
most e�cient ones and are only designed to be useful tools for the proofs we
will make later.

3.5 Properties

The di�cult part of this paper being the properties of the principal type and
not the typing algorithm, we will not prove the following propositions. More
details can be read in [The].

Proposition 3.4

• The algorithm always terminates. When successful it returns a typing
tree, otherwise it stops during a uni�cation.

• Let t be a typable term. Then the algorithm applied to t gives a typing
tree (in the extended system) for t and the tree is principal.

4 The SNIP property

Our purpose in the following sections is to give some fragments in which it is
possible to avoid unspeci�ed arrows for principal types. In these fragments,
the following property will be satis�ed by the principal type given by the
algorithm:

Definition 4.1 (SNIP property) Let T be a type.

• We say that T has the SNIP property if T is such that the unspeci�ed
arrows are all distinct and negative and the intuitionistic arrows are
positive.

11

• We say that T has the SPIN property if T is such that the unspeci�ed
arrows are all distinct and positive and the intuitionistic arrows are
negative.

• Let x : τ ` t : θ be a typing judgement. The judgement has the SNIP
property if the types of the variables have the SPIN property and if θ
has the SNIP property.

• We say that a term t has the SNIP property if its principal type has
the SNIP property.

SNIP stands for unSpeci�ed Negative, Intuitionistic Positive. For SPIN it is
then obvious.
We have the following theorem:

Theorem 4.2 Let t be a typable term. Assume t is either linear or η-long.
Then t has the SNIP property.

Proof: For the linear case it is proposition 5.10 and for the η-long case it is
proposition 6.41. 2

Proof of theorem 2.4: We know from 4.2 that t has the SNIP property.
Then the arrows −? are all distinct and negative and the arrows → are
positive. As the unspeci�ed arrows can be replaced by any arrow, we can
replace all of them by → and thus obtain a type PTi. In PTi we know
that any negative intuitionistic arrow (which before was unspeci�ed) can be
replaced by a linear arrow, keeping a valid type for the term (the unspeci�ed
arrows are all distinct).
Let T be a valid type for t in the initial system. It is also a valid type in
the extended system, thus there is a substitution S such that T = S PT .
The substitution S can be split into two substitutions, one St with domain
type variables, and another Sa with domain unspeci�ed arrow. It is easy
to see that the type Sa PT has no unspeci�ed arrows, and is in fact PTi

where some negative intuitionistic arrows have been replaced by linear ones.
Finally, T = St(Sa PT), where St is a substitution for the initial system. 2

Thus, we only need now to establish the proof of theorem 4.2.

Here follows an example showing why one must consider some fragments in
order to obtain a notion of unique principal type.

Example 4.3 Let t = λgλfλ◦xλu.(g (f x) (f λt.(t u))).
Its principal type is

(b(b−?1n) → (((a−?−2 e) →+ e)(b) → ((a−?+
2 e) →− e)(a → n

12

The + and − symbols are just notations for the following. This type has not
the SNIP property because none of the conditions is fu�lled:

1. There is a → arrow which has a negative occurrence (the one with
exponent −). The reason is that f has for argument λt.(t u) which has
type ((a−?2e) → e). As x appears also as argument of f , x must have
the same type. Thus ((a−?2e) → e) appears twice, with two di�erent
polarities.

2. The −?2 arrow has two occurrences, with a positive occurrence (the
one with exponent +) for the same reason.

Let us now argue on a possible replacement of the unspeci�ed arrows:

• Let us assume that we replace −?2 by an intuitionistic arrow. The fact
that there are intuitionistic arrows in both polarities makes impossible
the existence of a criterion (or a simple one) on the type allowing to
decide to change some intuitionistic arrows into linear ones, keeping a
valid type for t. Indeed if in the principal type an arrow is intuitionistic,
it can't be replaced by a linear one.

• The same reasoning is valid if we want to replace −?2 by a linear arrow,
because there are linear arrow in both polarities, which is the case for
most of the terms containing linear variables.

• Another important fact is that −?2 has two occurrences in the type.
This implies that in order to keep a valid type, one has to change both
in the same way, which makes an hypothetical criterion even more
complex than the one we propose.

Note that t is not η-long because x, whose type is an arrow, has no argument
and t is not linear because of f .

5 Linear terms

The �rst fragment we study is the linear fragment. We already gave the
de�nition (2.2) of linear terms. Recall in particular that the constants type
must satisfy that the intuitionistic arrows are positive. Otherwise any con-
stant with a negative intuitionistic arrow in its type would contradict the
SNIP property.
The typing algorithm in the case of linear terms is easier because it becomes
useless to unify the type variables, as no variable can be common to two
terms.
We want to prove that a linear term has the SNIP property. In fact we will
give a more general result, which can be easily proved for the standard linear
λ-calculus. We will not give all the proofs, as most of them are easy.

13

We need a speci�c lemma for terms with constants.

Lemma 5.1 Let C be a type with no type variable. Let T be a type uni�able
with C, containing a type variable α which has exactly one occurrence in T .
Let S be the uni�er of C and T .

• if α is positive (resp. negative) in T and C has the SNIP property then
Sα has no type variable and has the SNIP property (resp. the SPIN
property).

• If α is negative (resp. positive) in T and C has the SPIN property then
Sα has no type variable and has the SNIP property (resp. the SPIN
property).

Proof: By induction on the complexity of C, making case analysis on of
shape of T . 2

We �rst study the case of normal terms (β-reduced).

Lemma 5.2 Let t be a normal term, linear and typable. The following prop-
erties hold for t:

• Each type variable appearing in the principal type appears twice, with
a positive occurrence and a negative occurrence;

• The term t has the SNIP property.

Proof: By induction on the complexity of t. The proof is easy and is just a
case analysis on the shape of t. We use the algorithm 2 in order to type the
terms. We use the previous lemma for the case t = (c t1 . . . tn). 2

Definition 5.3 Let S be a substitution. We say that S is SL if S changes
unspeci�ed arrows only into (, and does not change any type variable.

Lemma 5.4 Let A and B be two uni�able types. Let S be SL. Assume that
SA and SB are uni�able too. Then there is a SL substitution S′ such that
U(SA,SB)◦S =S′◦ U(A,B).

Proof: By induction on the sum of the number of uni�cation steps of A and
B and of SA and SB, making case analysis on A and B. 2

Lemma 5.5 Let u1, u2 and v be three typable terms. Assume that no free
variable of u1 and u2 is in v. Assume there is a SL substitution S such that
PT(u1)=S PT(u2). We have the following properties:

• If (u1 v) and (u2 v) are typable then there is a SL substitution S′ such
that PT((u1 v))=S′ PT((u2 v)).

14

• If (v u1) and (v u2) are typable then there is a SL substitution S′ such
that PT((v u1))=S′ PT((v u2)).

Proof: Straightforward, using lemma 5.4 with, in the �rst case, A :=PT(u2)
and B :=PT(v)−?1α. We use the algorithm 1 in order to type the terms. 2

The following lemma gives us a way to prove the equality of the principal
types of two terms.

Lemma 5.6 Let t and t′ be two terms having a principal type. We assume
that if t has type T then t′ has type T and vice versa. Then t and t′ have the
same principal type.

Proof: Straightforward. 2

Lemma 5.7 Let w1, w2 and v be terms.

1. Assume that t = (λx.(w1 w2) v) is typable and that x appears exactly
once in (w1 w2).

(a) If x is in w1 then PT(t)=PT((λx.w1 v w2))

(b) If x is in w2 then PT(t)=PT((w1 (λx.w2 v)))

2. Assume that t = (λ◦x.(w1 w2) v) is typable and that x appears exacly
once in (w1 w2) then

(a) if x is in w1 then PT(t)=PT((λ◦x.w1 v w2))

(b) if x is in w2 then PT(t)=S PT((w1 (λ◦x.w2 v))) where S is SL.

Proof: For the �rst part and the �rst point of the second part, we use lemma
5.6. Let us prove the last point. Consider the typing tree of t in this case:

[;] ` w1 : β(γ [; x : α] ` w2 : β

[; x : α] ` (w1 w2) : γ

[;] ` λ◦x.(w1 w2) : α(γ [;] ` v : α

[;] ` (λ◦x.(w1 w2) v) : γ

Consider the typing tree of (w1 (λ◦x.w2 v)):

[;] ` w1 : β 1 γ

[; x : α] ` w2 : β

[;] ` λ◦x.w2 : α(β [;] ` v : α

[;] ` (λ◦x.w2 v) : β

[;] ` (w1 (λ◦x.w2 v)) : γ

Notice that the type of w1 can be di�erent in the two cases, because x can
be the only free linear variable in w2, thus 1 can be di�erent from(.

15

• If the �rst tree is a principal typing tree for (λ◦x.(w1 w2) v),

then (w1 (λ◦x.w2 v) can be typed with the same type because its typing
tree is still valid if we change 1 into(. Thus there is S1 such that

S1TP((w1 (λ◦x.w2 v)))=TP((λ◦x.(w1 w2) v))

with S1 not necessarily SL.

• If the second tree is a principal typing tree for (w1 (λ◦x.w2 v)), let us
consider the cases for 1:

� 1=(: the term (λ◦x.(w1 w2) v) can be typed of the same type
and there is S2 such that

TP((w1 (λ◦x.w2 v)))=S2TP((λ◦x.(w1 w2) v)). Thus both types are
equal and we can take the identity for S.

� 1=→: it is impossible. Indeed we know that the term is typable
with an arrow(for w1, thus there is a substitution that changes
the arrow of the type of w2 into (by de�nition of the principal
type. But one can not change an intuitionistic arrow into a linear
arrow.

� 1= −?1 an unspeci�ed arrow. Let S be the substitution that
changes −?1 into(.

If −?1 does not belong the the principal type, as we can apply S
to the tree and as S keeps the type invariant, there is S2 such
that TP((w1 (λ◦x.w2 v)))=S2TP((λ◦x.(w1 w2) v)). The two terms
have thus the same principal type and we can take the identity
for S.

Otherwise there is S2 such that

STP((w1 (λ◦x.w2 v)))= S2TP((λ◦x.(w1 w2) v)).
Necessarily the substitution S1 seen above contains S in this case
because the typing tree of t uses (. Thus if we de�ne S′

1 as the
substitution equal to S1 that keeps −?1 invariant,

S′
1 STP((w1 (λ◦x.w2 v)))= TP((λ◦x.(w1 w2) v)).

Thus STP((w1 (λ◦x.w2 v)))=TP((λ◦x.(w1 w2) v)).

Thus in all cases: STP((w1 (λ◦x.w2 v)))=TP((λ◦x.(w1 w2) v)) with S a SL
substitution. 2

The following lemma shows that the property holds by β-expansion.

Lemma 5.8 Let t be a linear term. Let t′ be such that t →β t′. Then there
is a SL substitution S such that PT(t)=S PT(t′).

Proof: By induction on the complexity of t, looking at the β-reduction
made on t, using lemma 5.5 and lemma 5.7, for the most di�cult cases of an
application. 2

16

Remark 5.9

1. Notice we really used in this lemma the fact that the terms are linear,
because PT((λx.(w1 w2) v)) is not equal to PT(((λx.w1 v) (λx.w2 v))),
what we should prove in order to get the result in a non linear case.
One can check for example that for w1 = λz.(z (x ξ ξ′)), w2 = λz.(x ζ z)
and v = λw.w both types are distinct. Moreover if (λx.(w1 w2) v) is
typable then ((λx.w1 v) (λx.w2 v)) is typable but the converse is false.
See for example w1 = λz.(z (x ξ)), w2 = λz.(x ζ z) and v = λw.w.

2. One can also wonder if the lemma is true for a�ne terms (whose vari-
ables appear at most once). But the answer is negative: if one consid-
ers t = λz.(λx.y (z u)), with u any (closed) normal term, one can see
that after a β-reduction the bounded variable z does not appear free
anymore and its type becomes an atom in the principal type.

We can now give the promissed proposition:

Proposition 5.10 Let t be a typable linear term. Then its principal type
has the following properties:

• Each type variable appearing appears twice with a positive and a nega-
tive occurrence.

• The type has the SNIP property.

Proof: We use the fact that these properties hold for normal terms, and
that they also hold by β-expansion thanks to previous lemmas. 2

Remark 5.11 These results are true only for the principal type of the linear
terms. The fact that all type variables appear twice, in di�erent polarities,
implies that if we change a type variable into a type containing a → arrow,
this arrow will then have a positive and a negative occurrence.

6 η-long terms

Before going into details and giving all the de�nitions we need, let us explain
the intuition behind the fact that η-long terms have the SNIP property.
This comes from the fact that the unspeci�ed arrows appear in the typing
algorithm during application rules only. So they correspond to elimination
rules, and so have negative polarities.
Nevertheless, in order that none of the unspeci�ed arrow appear positively,
it is necessary that each positive arrow is explicitly introduced by an ab-
straction, which is the case for η-long terms.
If the intuitive argument is quite easy, the proof of the property is not so
easy, and even looses this intuition. The di�cult part is in fact to prove

17

that during the uni�cations used by the typing algorithm, all the properties
are kept. And the most restrictive one is the uniqueness of the unspeci�ed
arrows, and of some type variables.
The greatest obstacle came from the subterms of the shape λx.t where x is
not free in t. In this case, x can have any type and t still be η-long. So the
type of x must not be changed into any type, it must satisfy the properties.
Thus we had to introduce a way to follow the uni�cation process which allow
to check that the properties are kept.

6.1 Syntactic properties of η-long terms

We already gave a de�nition (2.3) of the η-long terms.

Lemma 6.1 Let t be an η-long term. If t = (λ?x1 . . . xm.t′ t1 . . . tn) and t′

has not the shape λ?x.u then m = n.

Proof: Straightforward. 2

Remark 6.2 This lemma above implies that an η-long term has necessarily
one of the following shape:

• t = (x t1 . . . tn);

• t = (c t1 . . . tn);

• t = λx.u;

• t = λ◦x.u;

• t = (λ?x1 . . . xn.t′ t1 . . . tn) where t′ has not the shape λ?x.u. We will
sometime write t = (λ?x1 . . . xn.(. . .) t1 . . . tn) such a term.

The following lemma proves that our notion is the same as the usual notion
of η-long terms.

Lemma 6.3 Let t be an η-long term. Let t′ be a subterm of t having an
arrow type. Then t′ is applied or has the shape λ?x.u.

Proof: By induction on t. 2

Lemma 6.4 Let T be a typing tree of a term t, let S be a substitution. If
ST is η-long then T is η-long.

Proof: By induction on t. 2

18

Algorithm 3

The typing algorithm 2 is slightly modi�ed in order to take into account the
fact that the terms are η-long:

• The shape of the terms is always supposed to be in one of the cases
described above.

• The algorithm always checks if the type obtained is η-long. So after
each recursive call, all the subterms have an η-long type.

This new algorithm is called algorithm 3.

We now have to introduce a function whose aim is to justify each element,
arrow or atom, of the principal type of a term. Essentially this function
takes as arguments an address in a type and a term, and outputs a set of
subterms of the term whose type is the one pointed by the address.
It is important to notice that if a type is principal, each of its elements has
a reason to be. In the precise case of η-long terms, it is possible to associate
some subterms to each atom and arrow in the principal type.
This is possible because each subterm that has an arrow type is either an
abstraction or is applied to arguments. Thus in the second case it is always
possible to take the arguments.
In the case of arbitrary terms, such a task would be di�cult, because of the
lack of arguments for some subterms having an arrow type. This subterms
are indeed of the same type as other subterms that can be di�cult to detect.
The function that we will de�ne is mainly used with η-long terms and ad-
dresses in their principal type, even if the de�nition is more general.
We �rst have to precise our notion of address.

6.2 Addresses

Definition 6.5

1. An address is a �nite list, possibly empty, of elements of {0, 1}. We will
write [] the empty address, ε :: c the list c with ε added as �rst element
and c :: d the concatenation of two addresses. In order to simplify, we
will write 1k for a list containing k times 1.

2. We de�ne the application f which to an address c and a type T asso-
ciates the subtype of T met at the address c by induction:

• f([], T) = T

• f(0 :: c, T1 T2) = f(c, T1)

• f(1 :: c, T1 T2) = f(c, T2)

• In the other cases, f is not de�ned

19

3. We say that an address c is an address of a type T if f(c, T) is de�ned.
In this case we de�ne h(c, T) which denotes the head of the type f(c, T)
(which is either an arrow or an atom).

4. We say that c is positive if c has an even number of 0 and that c is
negative otherwise.

Lemma 6.6 Let T be a type, T ′ a subtype of T and c an address in T .

• There is an address c′ such that f(c′, T) = T ′

• c has the same polarity as f(c, T) in T .

• Let S be a substitution. Then c is an address in ST .

Proof: By induction on the complexity of the type T . 2

Lemma 6.7 Let c be an address in the type T and in the type T ′. Let S be
a substitution. If h(c, T) = h(c, T ′) then h(c, ST) = h(c, ST ′).

Proof: By induction on the size of c. 2

6.3 Justi�ng terms

We assume that bounded variables are also subterms, even if they do not
appear freely in a sub-term. This imply that they must have a �xed name.
As we do not perform reductions from now, this does not lead to problems
of α-conversion.
In practice, when we will take a set E of terms all the terms of E will be
some subterms of a unique term t, whose variables (bounded or not) are all
distinct.
Thus we assume for example that if two terms in E have (bounded) variables
with the same name then these variables are the same.

Definition 6.8 The notation λ?x.E, for a set E of terms, a set x of vari-
ables and λ? a given (�xed) abstraction, will stand for a set of terms λ?x.t for
t in E and x in x.

Note 6.9 The notation given in de�nition 6.8 is ambiguous, as it does not
precise which are the terms of λ?x.E. In fact it will be mainly used to
match the shape of a set of terms. There is a case where the notation is not
ambiguous: when the set x contains only one variable x, λ?x.E stands for
the set of λ?x.t for t in E. We will write it λ?x.E. This kind of set is the only
one that we will build from a set E of terms.

Definition 6.10 Let us de�ne ϕ the application de�ned on the pairs (ad-
dress,set of terms) by induction on the size of the addresses:

20

• ϕ([], E)=(E, [], E)

• ϕ(1 :: c, λ?x.E)=ϕ(c, E)

• ϕ([0], λ?x.E)= (x, [0], λ?x.E)

• ϕ(0 :: 1k :: 0 :: c, λ?x.E)= ϕ(c, F) (k ≥ 0) (?)

• ϕ(0 :: 1k, λ?x.E)= (G, 0 :: 1k, λ?x.E) (k ≥ 1) (??)

• ϕ is not de�ned in the other cases.

(?) where F = {tk+1 ; (x t1 . . . tk+1) is a subterm of a term λ?x.t of λ?x.E }.
If F is empty then ϕ is not de�ned.
(??) where G = {(x t1 . . . tk) ; (x t1 . . . tk) is a subterm of a term λ?x.t of
λ?x.E }. If G is empty then ϕ is not de�ned.

Remark 6.11

1. In the de�nition 6.10 the cases c = [0] and c = 0 :: 1k for k ≥ 1 are
separated. The reason is that in the second case we are interested in
the occurrences of x but not in the �rst one. Indeed, if c = [0], what
interests us is, for terms of the shape λ?x.t, what justi�es the type on
the left of the arrow. It is obvious that it is x that justi�es it, even if
x has no occurrence. In the other case, we are interested in the type
of one of the arguments of x, and thus we need the occurrences of x.

2. Notice that if one only wants to know if ϕ is de�ned for a precise input,
the name of variables have no real importance. The most important
fact is that the input must have the good shape, and that the sets of
subterms taken by ϕ must not be empty.

Definition 6.12

1. ϕ gives back a triple.

• The �rst object is a set called the set of justifying subterms.

• The second object is called the address of the last call.

• The elements of the last object are called the terms of the last call.

• The pair formed by the address of the last call and the terms of
the last call is called the last call to ϕ.

2. There are three cases in the de�nition of ϕ that are terminal, and the
address of the last call distinguish them:

• If it is [], we say that ϕ gives back η-long terms.

• If it is [0], we say that it gives back variables.

21

• If it has the shape 0 :: 1k with k ≥ 1, we say that it gives back
terms of the shape (x t1 . . . tk).

Remark 6.13

1. Remember that we said that in practice, when we will take a set E
of terms all the terms of E will be some subterms of a unique term
t, whose variables (bounded or not) are all distinct. Thus the set of
the justi�ng terms is well determined, in the sense that there is no
ambiguity thanks to the uniqueness of all variables. Subterms shared
by terms of E are the same sub-term in t.

2. The words "last call" come from the fact that ϕ is a recursive function,
and so the last call corresponds to the natural notion of last recursive
call. It is nethertheless important to notice that the recursion is not on
the a simple shape of the address: the cases are more complex than [],
0 :: c and 1 :: c. This implies that sometimes ϕ is not de�ned. But it is
obvious that after each recursive call the size of the address decreases.

Definition 6.14 Let ϕ̃ be the function de�ned on triples (address, variable,
set of terms) by ϕ̃(c, x,E) = ϕ(0 :: c, λ?x.E) where λ? depends on the variable
x (that must be of the same kind for all terms of E).

Example 6.15 Let t be λx.(f (x t1 λy.t3) (x t2 λz.t4)) with the ti be any
closed terms and c be [0, 1, 0, 0].
Then we have ϕ(c, {t}) = ϕ([0], {λy.t3, λz.t4}) = ({y, z}, [0], {λy.t3, λz.t4}).
Notice that the type of t has the shape T = (α → (β → γ) → δ) → ε.
We have f(c, T) = β and y and z do have the type β.

We will need the results of the following lemma. Some similar results for
ϕ̃ can be proven in the same way. They justify the vocabulary used in the
de�nition. Most of the time we will use these results implicitly.

Lemma 6.16 Let E and F be set of terms. Let c be an address.

• If ϕ(c, E) is de�ned let us write (c∗, E∗) its last call. Then ϕ(c, E) =
ϕ(c∗, E∗).

• If ϕ(c, E) is de�ned then the terms of the last call are η-long. In par-
ticular if the address of the last call is [] then the justifying subterms
are η-long.

• If ϕ(c, E) and ϕ(c, F) are de�ned then the address of the last call for
E and F are the same.

22

• If ϕ(c, E) and ϕ(c, F) are de�ned then ϕ(c, E∪F) is de�ned. Moreover,
the set of the justifying subterms is the union of the two justifying sets
of ϕ(c, E) and ϕ(c, F), and it is the same thing for the set of the
subterms of the last call.

Proof: By induction on the size of the address. 2

Remark 6.17 The last part of lemma 6.16 above justi�es that if we have
a term t of the shape (x t1 . . . tn), and if c is an address in the type of a
variable y, then the set of the justifying subterms of ϕ̃(c, y, {t}) contains the
set of the justifying subterms of each of the ϕ̃(c, y, {ti}). In order to see that,
one just have to look at the de�nition of ϕ̃, and of ϕ, in order to check that
we are in the case of the last part of lemma 6.16.

The following two lemmas justify the name 'justifying subterms'. When we
speak about the type of a justifying subterm, we speak about the type given
to it in the typing tree of the term it comes from. Here we suppose that
we are in the case where all the terms of a set E of terms are subterms
of a unique term t, whose variables are all distinct, in order to have well
determined subterms. But no particular condition is needed on the types of
the terms of E appart from the one in the lemmas.

Lemma 6.18 Let E be a set of typed terms. Let c be an address such that
ϕ(c, E) is de�ned. If there is an atom (resp. an arrow) such that, for all
term t of type T of E, h(c, T) is this atom (resp. arrow), then the justifying
subterms have a type with this atom (resp. arrow) as head.

Proof: By induction on the size of the address. 2

Lemma 6.19 Let E be a set of terms having the same type T . Let c be an
address such that ϕ(c, E) is de�ned. Then the justifying subterms have all
the same type, that is f(c, T).

Proof: By induction on the size of the address. 2

Lemma 6.20 Let E be a set of terms. Let c and d be addresses. If ϕ(c, E)
is de�ned let (c′, E′) be its last call. Then ϕ(c :: d, E) = ϕ(c′ :: d, E′).

Proof: By induction on the size of the address. 2

Remark 6.21 Lemma 6.20, which generalizes lemma 6.16, explains the role
of the last call and will be used in the following way: In the case where ϕ(c, F)
gives back variables, the last call has by de�nition the shape ([0], λ?x.E). If
we want to know if some of the variables are applied, and thus appear freely
in sub-terms of E, we just have to check that ϕ(c :: 1, F) is de�ned, because
ϕ(c :: 1, F) = ϕ([0, 1], λ?x.E) by lemma 6.20, and it is de�ned only if the
variables are applied by de�nition of ϕ.

23

6.4 Classes

We need tools allowing us to follow some properties during the typing of a
term t. The di�cult part is the typing of an application, using two steps of
uni�cation. During these steps, we have many judgements of terms, and we
have to unify the types of the common variables. In order to do that, one
has to get the part of the types that do not match, and unify them.
In order to point out these parts of type, we will de�ne the classes that, ob-
viously, will use the notion of address de�ned before. The classes intuitively
group together all the terms matching at the same address.
At the end of the uni�cation, the classes group together all the terms, as the
type of the variables are all the same.
As the proof of proposition 6.41, talking about a property of the types of
η-long terms, is made by induction, we need that a similar property holds
during the uni�cation process.

Note 6.22

1. In a set J of judgements we will always write ti (1 ≤ i ≤ n) the terms.
We will write τi(x) (resp. τ(ti)) the type of the variable x in the term
ti (resp. of the term ti).

2. We do not suppose in the following that a set of judgements is a set of
valid judgements. We will indeed sometime write judgements for which
the variables or the term do not have the right type with respect to
the other elements of the judgement.

Definition 6.23 (Point) Let J be a set of judgements.

1.

• P = (c, x, i) is a (variable) point of J if x is free in ti and c in an
address in τi(x). We say that P is a variable point.

• P = (c, i) is a (term) point of J if c is an address in τ(ti). We
say that P is a term point.

• A point of J is either a variable or a term point of J .

2. let P be a point of J . We de�ne HJ(P) (or H(P) if there is no confu-
sion), type head of P , in the following way:

• H(P) = h(c, τ(ti)) if P = (c, i);

• H(P) = h(c, τi(x)) if P = (c, x, i).

Definition 6.24 (Class) Let J be a set of judgements.

24

1. On the points of J we de�ne a relation ' which is re�exive (in partic-
ular (c, i) ' (c, i)) and such that (c, x, i) ' (d, y, j) if c = d, x = y and
H(c, x, i) =H(c, x, j). This relation is clearly an equivalence relation.

A class of J is an equivalence class for this relation. We will write
(c, i) instead of {(c, i)} and (c, x, I) instead of {(c, x, i) | i ∈ I} in order
to have simple notations.

We will write ClJ(P), or simply Cl(P) if there is no confusion, the
class of a point P .

2. We de�ne the type head of a class C, that we write HJ(C) (or H(C) if
there is no confusion), as H(P) for any point P of C.

3. Let C be a class of J .

• if C has the shape (c, i) we say that it is a class of a term;

• if C has the shape (c, x, I) we say that it is a class of x (or more
generaly of a variable).

In both cases we say that c is the address of C.

Remark 6.25 Let J be a set of judgements. Then for all atom (resp.
arrow) appearing in types, there is a class whose type head is this atom
(resp. arrow). Indeed we can associate an address, a term (plus potentially
a variable) that points to this atom (resp. arrow) by lemma 6.6, and so the
point and then the class exists. Thus each atom or arrow can be seen as a
H(C) for a class C.

Definition 6.26 (Associated set of a class) Let J be a set of judge-
ments and C be a class of J . The associated set of C, noted EJ(C) (or E(C)
if there is no confusion) is

• E(C) = {ti} if C = (c, i);

• E(C) = {ti | i ∈ I} if C = (c, x, I).

Definition 6.27 (Justifying set of a class) Let J be a set of judge-
ments. Let C be a class of J of address c.

• if C is a class of a term, Φ(C) = ϕ(c, E(C)).

• if C is a class of a variable x, Φ(C) = ϕ̃(c, x,E(C)).

• A class C is justi�ed if Φ(C) is de�ned.

25

Example 6.28 Let us consider t1 = λy.(x y) and t2 = λw.λ◦z.(x (w z)).
Let J be the set of judgements containing the principal typing of t1 and t2:

x : a−?b ` t1 : a → b

and
x : a(b ` t2 : (c(a) → c(b

We gave intentionally some type variables shared by both terms. The vari-
able x can be either linear or intuitionistic, let us consider it intuitionistic in
the following.
then:

• P1 = ([], x, 1), P2 = ([0], x, 2) and P3 = ([0, 1], 2) are points of J ;

• C1 = ([], x, {1}), C2 = ([0], x, {1, 2}) and C3 = ([0, 1], {2}) are their
respective classes.

Let us see it precisely:

• P1 is a point such that H(P1) = −?. As H([], x, 2) =(6=H(P1), we
obtain Cl(P1) = C1. Then Φ(C1) = ({x}, [0], λx.t1}).

• P2 is a point such that H(P2) = a.

As H([], x, 1) = a =H(P2) we obtain Cl(P2) = C2.

Thus Φ(C2) = ({(w z), y}, [], {(w z), y}).

• P3 is a point such that H(P3) = a.

We know that Cl(P3) = ([0, 1], {2}) = C3 by de�nition and then
Φ(C3) = ({(w z)}, [0, 1], {t2}).

Definition 6.29 (Singularity) Let J be a set of judgements. Let a be
an atom (resp. an arrow) appearing in J . We say that a (resp.) is
singular in J if there exists a unique class C of J such that H(C) = a (resp.
).

Definition 6.30 (Polarity) Let J be a set of judgements. Let C be a
class of J of address c.

• if C = (c, i), H(C) is positive if c is positive, negative otherwise;

• if C = (c, x, I), H(C) is positive if c is negative, positive otherwise.

Remark 6.31 In the case where the set of judgements contains only one
term, the singularity means that the atom (or arrow) has a unique occur-
rence, and the polarity is equivalent to the one de�ned above.

26

Definition 6.32 Let J and J ′ be two sets of judgements of the same terms
ti. We say that a class C of J is included in a class C ′ of J ′ if both have the
same address, are classes of the same variable and if EJ(C) is included in
EJ ′(C ′).

Lemma 6.33 Let J be a set of judgements, let S be a substitution and P be
a point of J . Then P is a point of SJ and the class of P in J is included in
the class of P in SJ .

Proof: It is straightforward following the de�nitions and using lemmas 6.6
and 6.7. 2

6.5 Preliminary lemmas

We �rst need some de�nitions and lemmas.

Definition 6.34 (Class property) Let J be a set of judgements. We
say that J has the class property if the following points are satis�ed:

• There is an η-long term t such that (where the terms ti are the terms
of J):

� either ti = t for each i;

� or t = (x t1 . . . tn);

� or t = (c t1 . . . tn);

� or t = (t1 t2 . . . tn) with t1 = λ?x1 . . . xn.t′ and t′ is not an ab-
straction.

We say that J is associated to the η-long term t;

• Each class C is justi�ed;

• If the last call of Φ(C) has the shape ([0], {λ?x.u}) with x 6∈ u then
H(C) is an atom a and a is singular;

• If H(C) is an unspeci�ed arrow then it is singular and it is negative;

• If H(C) =→ then it is positive.

Remark 6.35

1. The �rst point of the class property implies, as t is η-long, that the ti
are also η-long. It is also important to notice that the �rst point does
not depend on the types given in J .

2. The class property is a generalization of the SNIP property, which
consists in the two last points when J is a singleton.

27

3. The condition on the classes such that the last call has the shape
([0], {λ?x.u}) may seem enigmatic. It is nevertheless very important.

Indeed, these atoms, and only them, are susceptible to be transformed,
during the uni�cation steps, into arrow types (we always keep the fact
that terms are η-long because the variables don't appear in this case).
The condition of singularity ensures that applying the substitution does
not break the property on the arrows. Indeed, it implies that this atom
does not appear with a di�erent polarity, which then would invert the
polarity of all the arrows, and even multiply them.

In the uni�cation process, apart from these particular atoms, the uni-
�cation always changes atoms into atoms, and arrows into arrow, be-
cause the terms are η-long, and the type of the appearing variables
have always mainly the same shape.

Lemma 6.36 Let J be a set of judgements having the class property. As-
sume there is a point P1 = (c, x, i) such that f(c, τi(x)) is a type variable α
and a point P2 = (c, x, j) such that f(c, τj(x)) is an arrow type T . Let S be
the substitution that changes α into T . Then SJ has the class property.

Proof: Let us de�ne C1 =ClJ(P1) and C2 =ClJ(P2), which are justi�ed by
assumption.

• Let us �rst prove that H(C1) = α is singular in J .

In the η-long term t associated to J , the justifying subterms for C1

and for C2 have all the same type thanks to lemma 6.16, remark 6.17
and lemma 6.19.

The address of the last call are the same for both classes by lemma 6.16,
thus only three cases may eventually occur for the justifying subterms

� They are η-long terms. This means that for C2 they have the
shape λ?x.u, but not for C1. Moreover for C1 these terms are not
applied. But in t they all have the same type and stay η-long. It
is impossible.

� They are terms of the shape (x t1 . . . tk). This means that for C2

these terms are applied, but not for C1. But in t they all have
the same type, and as t is η-long it is impossible.

� So they are variables.

Thus for C2 some of these variables are applied, because they
have an arrow type. One only needs to make the address longer
by adding 1 for example, in order to get a point P ′

2 = (c :: [1], x, j)
whose class will be justi�ed by assumption and so gives back
some (y v1). Indeed, as the terms are variables, the last call is
by de�nition of the shape ([0], λ?y.E). Thanks to lemma 6.16,

28

Φ(C2) = ϕ([0], λ?y.E). Then thanks to lemma 6.20, Φ(ClJ(P ′
2)) =

ϕ([0, 1], λ?y.E). Finaly by de�nition, we can see that the set of
justifying subterms contains some (y v1).
But in C1 no variable appear. Indeed otherwise they would not
be applied because they have a type variable as type, and as in t
these variables all have the same type, it is necessarily an arrow
type, because of C2 (the variables being applied), but then there
would be non applied variables of arrow type, which is possible
for η-long terms only if they do not appear.

Thus by the class property we obtain that α is singular in J .
Indeed, we have just shown that we have a class, C1, such that
the last call of Φ(C1) has the shape ([0], {λ?x.u}) with x 6∈ u. Thus
by assumption H(C1) = α is an atom, what we already know, and
is singular.

• Let us prove now that for all class Cs of SJ there s a point Pa of
Cs such that Pa is also a point of J and if HSJ(Cs) is an arrow then
HJ(Pa) is the same arrow.

Let P be any point of Cs. If it is a point of J then it is obvious. It is
the case for all the classes (e, k) because α is singular and so the type
of the terms is not changed by S.

Otherwise let us write (e, y, k) the point P . Let ė be the longest sub-
address of e such that for all strict sub-address e′ of ė (e′, x, j) is a
point of J (in the worst case ė = []). The address ė is di�erent from e.
Let us consider h(ė, τ(tk)), there are three cases

� it is an arrow. Impossible because otherwise we could take ė
longer because the arrow is not changed by S.

� it is a type variable di�erent from α. As it is not changed by S,
we would have e = ė because it is impossible to make this address
longer into SJ , which is impossible.

� thus it is the type variable α. Necessarily ė is c and the class of
the point (ė, y, k) is C1 by singularity of α and thus y = x. Thus
e = c :: c′, c′ being an address in the type T , because α is changed
into T . The triple (e, x, j) is a point of J because P2 = (c, x, j) is
a point such that f(c, τj) is T by assumption. Thus we can take
Pa = (e, x, j). This point is a point of SJ , which is in the class of
P , that is Cs by de�nition of the class.

• Let us �nally prove that SJ has the class property.

� The �rst point is still true because it does not depend on the types
given in J as we have already remarked.

29

� All the classes are justi�ed thanks to what we have just proven.
Indeed let Cs be a class in SJ . Then there is a point Pa in Cs

such that Pa is also a point in J . By assumption the class of Pa

in J is justi�ed, thus also in SJ (the justi�cation does not depend
on the type).

� If Cs is such that Φ(Cs) has the shape ([0], {λ?x.u}) with x 6∈
u then it is the same thing for the class C of Pa in J . Thus
by assumption HJ(C) is an atom b and b is singular in J . The
substitution changes it into HSJ(Cs).
If HSJ(Cs) is not an atom, this means that b = α and thus P2 is
in Cs by singularity of α. But H(P2) is an arrow by assumption,
and thus one can't have x 6∈ u for all the terms of the last call
(to see that, it is enough to take as above the class of the point
(c :: 1, x, tj) which is justi�ed in order to see that some variables
are applied and in particular appear).

Thus we know that HSJ(Cs) is the atom b (as it is di�erent
from α it is not changed by S). Assume that it is not singu-
lar in SJ . Thus there is a class C ′

s di�erent from Cs such that
HSJ(Cs)=HSJ(C ′

s)=b. But there is P ′
a a point of C ′

s which is also
a point of J . As the classes of Pa and P ′

a in SJ are di�erent (they
are Cs and C ′

s),they are also di�erent in J .

But as b is singular in J , HJ(Cl(Pa)) = b is di�erent from

HJ(Cl(P ′
a)), which must be changed into b by S by assumption

on C ′
s. But nothing is changed into b, so this is impossible.

Thus b is singular in SJ .

� If H(Cs) is an unspeci�ed arrow then it is the same thing for
H(Pa) (Pa still being the point which existence has been proved
before) and this arrow is singular and negative in J . It is also a
negative arrow in SJ because it is the same address. And it is also
singular in SJ by a similar argument to the previous paragraph
if we suppose that it is not singular.

� If H(Cs) is an intuitionistic arrow, then it is the same thing for
H(Pa) and this arrow is positive in J , thus also in SJ . 2

Here is the same lemma but in the case of the substitution of an arrow.

Lemma 6.37 Let J be a set of judgements satisfying the class property.
Assume there is a point P1 = (c, x, i) such that H(P1) is an unspeci�ed
arrow −?1 and a point P2 = (c, x, j) such that H(P2) is another arrow 2

(either unspeci�ed or linear). Let S be the substitution that changes −?1 into
 2. Then SJ has the class property.

Proof:

30

• It is obvious by assumption that −?1 is singular.

Let us consider the classes C1=ClJ(P1) and C2=ClJ(P2), which are
justi�ed.

• Let us prove that for all class Cs of SJ there is a point Pa of Cs such
that Pa is also a point of J and if HSJ(Cs) is a arrow then HJ(Pa) is
the same arrow.

Let P be any point of Cs. It is necessarily a point of J , because
the addresses have not changed. If HSJ(Cs) is an arrow, assume that
HJ(P) is not the same.

Necessarily S(HJ(P))=HSJ(Cs), thus HJ(P)=−?1 and HSJ(Cs)= 2,
which implies that P is in C1 by singularity of −?1. Let us then take
Pa = P2. We have H(P2)= 2 and P2 is in Cs in this case.

• Let us �nally prove that SJ has the class property.

� The �rst point is still valid.

� All the classes are justi�ed by the same argument as the previous
lemma.

� If Cs is such that Φ(Cs) has the shape ([0], {λ?x.u}) with x 6∈ u
then it is the same thing for the class C of Pa in J . Thus by
assumption HJ(C) is an atom b and b is singular, and it is not
changed by the substitution.

It is singular by the same argument as the previous lemma.

� If HSJ(Cs) is an unspeci�ed arrow −? then it is the same thing
for HJ(Pa) and this arrow is singular and negative in J . It is also
a negative arrow in SJ because it is the same address.

Assume it is not singular in SJ . Then there is a class C ′
s di�erent

from Cs such that HSJ(Cs)=HSJ(C ′
s)=−?. But there is P ′

a a point
of C ′

s that is also a point of J , and such that HJ(P ′
a) = −?. As

the classes of Pa and P ′
a in SJ are di�erent (they are Cs and C ′

s),
they are di�erent in J . This contradict the singularity of HJ(Pa).

� If H(Cs) is an intuitionistic arrow then it is the same for H(Pa)
and this arrow is positive in J , thus also in SJ . 2

Here is again the same lemma, in the case of the substitution of a type
variable into another one.

Lemma 6.38 Let J be a set of judgements which has the class property.
Assume there is a point P1 = (c, x, i) such that H(P1) is a type variable α
and a point P2 = (c, x, j) such that H(P2) is another type variable β. Let S
be the substitution that changes α into β. Then SJ has the class property.

31

Proof:
Consider the classes C1=ClJ(P1) and C2=ClJ(P2) which are justi�ed.

• Notice that neither α nor β are necessarily singulars in J .

• Let us prove that for all class Cs of SJ there is a point Pa of Cs such
that Pa is also a point of J and if HSJ(Cs) is an arrow then HJ(Pa) is
the same arrow.

Let P be any point of Cs. It is necessarily a point of J , because the
addresses did not changed. If HSJ(Cs) is an arrow then HJ(P) is the
same one because arrows have not changed, nor the shape of the types.

• Let us �nally prove that SJ has the class property.

� The �rst point is still valid.

� All the classes are justi�ed by the same argument as in lemma
6.36.

� If Cs is such that Φ(Cs) has the shape ([0], {λ?x.u}) with x 6∈ u
then it is the same thing for the class C of Pa in J (which is
included in the �rst one by lemma 6.33). Thus by assumption
H(C) is an atom b and b is singular in J . It's substitution is still
an atom.

If it is the same atom then it is singular by the same argument as
in lemma 6.36.

If it is a di�erent atom, then b = α and H(Cs)=β. As α is
singular in this case, necessarily C=C1. Then Cs contains P2 and
so its class thanks to the substitution. As Φ(Cs) has the shape
([0], {λ?x.u}) with x 6∈ u, it is the same thing for Φ(C2) and β is
singular in J .

Thus β is singular in SJ : the substitution changes α singular in
J into β singular in J , and the class Cs contains boths classes C1

and C2.

� If H(Cs) is an unspeci�ed arrow then it is the same thing for
H(Pa) and this arrow is singular and negative in J . It is also a
negative arrow in SJ because it is the same address, and it is
singular in SJ by the same argument as previously.

� If H(Cs) is an intuitionistic arrow then it is the same thing for
H(Pa) and this arrow is positive in J , and thus in SJ too. 2

Note 6.39 When we consider a set of judgements containing only one term
t, we write (c, x, t) and (c, t) the points of J . Notice that in this case, talking
about points is equivalent to talking about classes. In the following we will
then talk about points.

32

Lemma 6.40 Let t be an η-long term, consider an η-long judgement for t.
Let J be the set containing olny this judgement. Let P = (c, x, t) be a point
such that H(P) is an atom and P is justi�ed. Then the justifying subterms
are not applied and do not have the shape λ?x.u′.

Proof: Straightforward. 2

6.6 The Proposition

We can now give and prove the promissed proposition for η-long terms:

Proposition 6.41 Let t be a typable term such that the algorithm 3 gives
for t an η-long typing tree. Then the (set sontaining only the) judgement at
the root of the tree has the class property.

Proof: By induction on the complexity of t.

1. t = λx.t′: by induction the judgement given after the recursive call,
{[x : τ, xi : τi ; yj : γj] ` t′ : θ} has the class property. The
algorithm gives then {[xi : τi ; yj : γj] ` λx.t′ : τ → θ}. One can
then check that the class property is satis�ed.

2. t = λ◦x.t′: in the same way.

3. t = (x t1 . . . tn): consider J0 the set of judgements given for the ti. By
induction each of the judgements of J0 has the class property. We can
assume that each ti has type variables di�erent from the others. Then
J0 has the class property.

• The �rst step, the uni�cation of the types of the variables, is made
by going from set of judgements to set of judgements all expected
in the lemmas 6.36, 6.37 and 6.38. After each step of uni�cation,
the property is then satis�ed. Thus at the end of the uni�cation
process, we obtain a set of judgements having the class property,
and the free common variables have their type uni�ed.

• The second step is the uni�cation of the type of x obtained at the
end of the �rst step with the type formed by the types of the ti
obtained and β. Consider the set of judgements containing the
two judgements described below:

� the judgement of t = (x t1 . . . tn), where all the free variables
have the type obtained after the �rst step (if x is not free, we
give a fresh type variable as type).

� the same judgement of t but with a type for the variable x
constructed from the types of the ti obtained after the �rst
step and using a new type variable β.

33

In these two judgements the type of t is β. Both judgements have
the class property. Indeed the type of t being β, the only point of
the shape (c, t) is ([], t). Then for the points of the form (c, y, t)
with y di�erent from x the justi�cation is the same as for the set
of judgements of the ti. For the points of the shape (c, x, t)
� in the �rst judgement x is treated as the other variables.

� in the second judgement, the type given to x is
τ1 1 . . . τn n β. It has the SPIN property thanks to the
�rst step. Some of the addresses are related to addresses in
the types τi of the ti, others are related to arrows i or to β.

In all cases the points are justi�ed, and the singularities are kept.
The singularities come from the fact that the class of a point
(c, y, t) with y being any variable is the set of all the terms ti at
the end of the �rst step of uni�cation.

Thus this set has the class property. We can so apply lemmas
6.36, 6.37 and 6.38 in order to conclude that at the end we obtain
twice the same judgement that has the class property. Thus the
class property is satis�ed.

4. t = (c t1 . . . tn): the �rst step (uni�cation of the types of the variables)
is similar to the previous case.

For the second step, let us consider the term t with the types of the
variables obtained after the �rst step, t having an atom as type. The
class property is satis�ed. We then unify the type of c with the type
constructed with the types of the ti obtained after the �rst step and
a new type variable. As the algorithm ends, we know that t keeps an
atom as type and is η-long after the application of the uni�er.

Assume that the uni�cation changes type variables appearing in the
type of the variables into arrow types. The previous lemma shows
then that the term obtained is no more η-long (because the justifying
subterms having an atom as type are neither applied nor of the shape
λ?x.u), thus it is impossible.

Thus all the points are justi�ed. It is obvious that the unspeci�ed
arrows, as they are singular before the uni�cation, stay unchanged and
singular. Consequently all the arrows are the same and have the same
polarity as before the uni�cation. The points P for which the last call
to Φ as the shape ([0], {λ?x.u}) with x 6∈ u are such that H(P) is an
atom a and a is singular before the uni�cation. As the uni�cation does
not changes this atom, it is still true after the uni�cation.

Thus the class property is satis�ed.

5. t = (λ?x1 . . . xm.(. . .) t1 . . . tm): it is similar to the previous case. No-
tice that there is m + 1 judgements in the set of the �rst step (we add

34

the term λ?x1 . . . xm.(. . .)). 2

We �nish with the following corollary, which allows to use the SNIP property
not only for the principal type, but for any η-long term.

Corollary 6.42 Let t be an η-long typable term of type T . Assume there
is an address c such that h(c, T) is → and c is negative. Then t is (η-long)
typable of type T ′ where T ′ is T where → has been replaced by (.

Proof: As t is η-long typable, its principal type TP is η-long. There is a
substitution S such that STP=T . By the previous proposition, TP has no
negative →. Thus S changes an unspeci�ed arrow −?1 into →, or a type
variable α into a type A containing the arrow →.
In the �rst case, as −?1 has a unique occurrence, we can exchange S with S′

which is S that maps −?1 to(. Then S′TP = T ′ and T ′ is a valid type for
t.
In the second case, let us prove that α has a unique occurrence. In TP , there
is an address c for α. The point P is justi�ed by te previous proposition and
the terms of the last call are η-long. The justifying subterms have type α.
The address of the last call is not [], because otherwise the justifying subterms
are also η-long, but with the type T , these terms have an arrow type. Thus
the justifying subterms are either (x t1 . . . tk) or variables. They can't be
(x t1 . . . tk), because within the principal type they have type α, and so can't
be applied, but with T they have an arrow type and t is η-long. Thus they
are variables, the last call being ([0], {λ?x.u}). Necessarily the variables x do
not appear in the terms u, otherwise they would not be applied, but with T
they have an arrow type. The previous proposition implies then that α has
a unique occurrence.
As α has a unique occurrence, we can consider S′ which is S where α is
changed into A′, which is A where → is exchanged with(. Thus S′TP=T ′

and t has type T ′. 2

Future Work

Some problems are still to be explored. We could study the uni�cation or the
matching problem. This has already been studied on the similar λ-calcul of
I. Cervesato (cf. [CePfe1, CePfe2]), which is however a bit easier, as there are
two kinds of application, and not a single one like in the calculus introduced
in this paper, which eliminates typing problems.
To add intuitionism is not the only way to extend the calculus for ACGs.
Another way is to add features to atomic types. This would allow a more
concise and precise description of signatures for the user. For example, for the
atomic type NAME, we can add features corresponding to number (singular,
plural). In cases where it is possible for a term to have any feature, it could

35

be possible to group cases by a quanti�er, which reduces the de�nition of
the signatures. It could then be another case of study.

References

[CePfe1] I. Cervesato, F. Pfenning, A linear Logical Framework, 11th An-
nual Symposium on Logic in Computer Science - LICS'96 (E. Clarke,
editor), pp. 264-275, IEEE Computer Society Press, New Brunswick,
NJ, 27-30 July 1996

[CePfe2] I. Cervesato, F. Pfenning, Linear Higher-Order Pre-Uni�cation, In-
ternational Workshop on Proof-Search in Type-Theoretic Languages
- PSTT'96 (D. Galmiche, editor), pp. 41-50, New Brunswick, NJ, 30
July 1996

[DaMi] L. Damas, R. Milner, Principal type-schemes for functional pro-
grams, 9th symposium Principles of programming Languages, pp 207-
212. ACM Press, 1982

[DeG] P. de Groote, Towards abstract categorial grammars, in Association
for Computational Linguistics, 39th Annual Meeting and 10th Con-
ference of the European Chapter, Proceedings of the Conference, pp.
148�155, 2001

[Hu] G.P. Huet, A uni�cation algorithm for typed λ-calculus, in Theoretical
Computer Science 1 27-57, North-Holland Publishing Company, 1975

[The] P. Thévenon, Vers un assistant à la preuve en langue naturelle, PhD
Thesis, Université de Savoie, 2006

36

