
CLA 2004 Preliminary Version

Validation of proofs using PhoX

Patrick Thévenon 1,2

LAMA
Université de Savoie

Campus Scientifique - 73376 Le Bourget-du-Lac Cedex, FRANCE

Abstract

In this paper we present the DemoNat project, its purposes and the ideas developed
so far. DemoNat is a French project whose aim is to make a program able to analyze
and validate proofs made in a natural language. It will be used by students in order
to improve the way they understand and make mathematical proofs.

Key words: Proof assistant, linguistics, resolution method

1 Introduction

As there are two parts in the project (the analysis and the validation), three
laboratories of linguistics and/or mathematics are working on it:

• Lattice / TaLaNa (Paris 7)

• Calligramme (Nancy)

• LAMA (Chambéry)

The program, not yet implemented, will be based on the proof assistant
PhoX which is developed by Christophe Raffalli at the ’Université de Savoie’.
This program is already used by students but since it requires the knowledge
of commands, it is not so easy to use it.

With the DemoNat project students will be able to write their proof in a
natural language (say French) and the machine will have to analyze it in term
of linguistic and to validate it in term of logic. See below (Fig 1) the diagram
of the system.

Let us explain it: the student first writes a proof of a theorem in a natural
language. The program then translates it into a proof made in an intermediate

1 Thanks to René David for his attentive reading and corrections. Thanks to Christophe
Raffalli for his suggestions of presentation.
2 Email: patrick.thevenon@univ-savoie.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Thévenon

natural

Translation Automatic prover

Proof in

Language

Proof in
PhoX.nc

Proof
validated

Fig. 1. Diagram of the system

language called PhoX.nc. It includes the standard commands of PhoX and
some others that we will call new commands.

Standard commands are the usually defined commands in proof assistants:
intro, left, elim, apply, prove, trivial, . . .. All except trivial correspond
to combinations of proof rules and so are validated for syntactic reasons.
New commands are different because the automatic tactic must prove a for-
mula before validating them.

In section 2 we introduce the new commands and explain the purpose of
this language. In section 3 we give a simple example of a proof that could
be made by a student and we explain how the program will have to analyze
it. The section 4 is devoted to the validation, the mathematical part of the
project, which needs a theorem prover dedicated to this project.

2 New command: a meta-rule

Before giving the grammar of the new commands we expose their general
purpose. A step of the proof is a list of sequents H ` G where H are lists of
hypotheses and G are goals to prove. At each step we consider one of these
sequents.

When a new command is given it generates a list of sequents (H,Hi ` Gi).
The automatic tactic must then be able to show that the current sequent can
be deduced from the sequents generated. Intuitively the theorem prover must
prove the following sequent:

H ` (H1 → G1) → . . . → (Hs → Gs) → G

which will justify the meta-rule:

H,H1 ` G1 . . . H,Hs ` Gs

H ` G
In the next state of the proof H ` G is deleted from the list of sequents

and the sequents H,Hi ` Gi are added.

As the definition of new commands is not yet fixed, we give here a very
general and partial (but an important part of the) grammar for the commands
in PhoX.nc. An important thing to mention is that these commands are de-
signed to be close to a natural language but with a formal grammar. Thus by

2



Thévenon

this principle some of the standard commands are kept:

let .. cmd (naming)
| assume .. { and ..} cmd
| deduce .. { and ..} cmd
| by .. { with ..} cmd (hints)
| show .. (replace goal)
| prove .. (cut rule)
| trivial
| ∅
| cmd then cmd (cases)
| begin cmd end (brackets)

Some of the commands are obvious but some of them need to be explained.

• let allows to introduce new names, that is to introduce new constants (or
variables). For instance if you have to prove that ∀x ∈ R P (x), you can
write let t ∈ R show P (t). Then the new name can be used in the current
branch of the proof.

• assume allows to give more information on what the introduced constant
must verify. For instance if ∀x M(x) → N(x) is the goal we could write
let t assume M(t) show N(t). More generally it is used to add hypotheses.

• deduce is just for deducing things from the current hypotheses which are
added to the hypotheses. For instance if A → B and A are hypotheses we
can write deduce B.

• by and with are really important commands for the prover as they are
used to give some clues on how the proof of the ’meta-rule’ can be done.
After by and with can be given either an hypothesis (fact) or a variable
name. These commands have no influence on the property associated to the
new command, they only help the prover. Examples are given in the next
sections.

• show is quite obvious, its purpose is to change the current goal. It can be
read as ’it suffices to prove that’.

• prove is very different from show and from the others given as it is standard
and so does not need to be validated by an automatic prover: it is simply
the use of a cut rule. Here the user wants to introduce a lemma that he will
prove next.

• then adds sub-goals in the meta-rule. It allows to prove by cases: for
example, if we have A ∨B as an hypothesis, we can write assume A then
assume B. This command is also used when the goal is A ∧ B: we can
then write show A then show B.

• begin . . . end is just to put new commands into parentheses. This is nec-
essary because it is possible to put commands into others.

3



Thévenon

3 The translation

We now introduce an example of a proof for a proposition that can be made
by a student with the system. But first let us introduce some constants and
definitions.

Let X and Y be two topological spaces. Let f : X −→ Y . We can define
two notions of continuity:

• f continuous = the inverse image by f of an open set is an open set.

• f continuous at x = the inverse image by f of a neighbourhood of f(x)
is a neighbourhood of x. For PhoX the notation will be ”continuous at”.

Proposition 3.1 f continuous → ∀x ∈ X f continuous at x.

Proof. Assume f is continuous, let x ∈ X. Let V be a neighbourhood of f(x),
we must prove that its inverse image is a neighbourhood of x. By definition
of a neighbourhood let O be an open set included in V and containing f(x).
As f is continuous, f−1(O) is open and x ∈ f−1(O). As f−1(O) ⊂ f−1(V ),
the proof is finished. 2

As you can see the proof is really easy. Now let us study in detail how
the translation from the natural language to PhoX.nc could be made. We
must warn about the fact that this translation is only one possible and that
there may be many other translations. The aim is just to point out some of
the difficulties that may occur while translating proofs into PhoX.nc. The
translation here will be done step by step, that is one sentence after the
other. At each step we give the current hypotheses and goal together with the
sentence written by the student and from them will follow the translation.

Note that the syntax we use in this article for the formulae is not exactly
the syntax found in PhoX. For example, we will always write ”x ∈ X” when
in PhoX it could be written ”X x”. Another examples are the use of ”xn”
instead of ”x n” and ”f(x)” instead of ”f x”. The aim is just to have usual
notations in order to be more readable by anyone.

• First the user adds assumptions and so changes the goal.

` f continuous
→ ∀x ∈ X f continuous at x

Assume f is continuous, let x ∈ X.

⇓
assume f continuous let x ∈ X
show f continuous at x.

It is necessary, in the translation, to give the new goal (if it changes) even
if the user does not give it explicitly, in order to obtain a valid meta-rule. It is
the first difficulty encountered but this one is not very hard as the translator
knows the current state of the proof and so can infer that we are dealing with

4



Thévenon

a goal of the form M → N and that M is assumed. Thus what is to be proved
is N.

• Now the user shows that he knows his definition of local continuity.

H:= f continuous
H0:= x ∈ X

` f continuous at x

Let V be a neighbourhood of f(x), we must
prove that its inverse image
is a neighbourhood of x.

⇓
let V assume V neighbourhood.Y f(x)
show (reverse f V) neighbourhood.X x.

Here there are two difficulties. The first one is that the student knows
implicitly that there are two kinds of neighbourhood but he does not make
this difference explicitly in his sentence. So the translator has to be able to
deal with that: find the good notions of neighbourhood for each word. Here
it is one more time helped by reading the definition of the goal. The sentence
of the student is no more than a reading of a definition.

The second difficulty comes from the use of the word ’its’. To what does
it refer ? Such kind of words, called anaphoras, can often appear in proofs
and the translator will have to deal with them. Here it clearly refers to the
neighbourhood V which is the last constant defined by the student. Moreover
it is not given by which function we take the inverse image of ’it’. Here the
context implies that it can only be the function f .

• Now the student uses an hypothesis:

H:= f continuous
H0:= x ∈ X
H1:= V neighbourhood.Y (f x)
` (reverse f V ) neighbourhood.X x

By definition of a neighbourhood
let O be an open set
included in V and containing f(x).

⇓
by H1 let O
assume O open.Y and O ⊂ V and f(x) ∈ O.

Most of the hypotheses will never be explicitly named by the user (even if it
is possible to do this in the system) because usually they are not. Hypotheses
are only named in difficult proofs or when they can be used many times,
etc. . . Here the student just wrote ”by definition of a neighbourhood” so he

5



Thévenon

could either work on the goal or on the hypothesis H1 as both ’speak about’
neighbourhood. In fact if the translator does not manage to know that we are
working on H1, it could try the different possibilities in order to find the good
one which is the one that will be validated by the automatic prover (otherwise
the user can come back to the last goal and changes its sentence). But it could
here find that the user talks about the hypothesis H1 as it talks about f(x),
which only appear in this hypothesis.

• Here is another use of assumption:

H:= f continuous...
H2:= O open.Y
H3:= O ⊂ V
H4:= f(x) ∈ O

` (reverse f V ) neighbourhood.X x

As f is continuous, f−1(O) is open
and x ∈ f−1(O).

⇓
by f continuous deduce
(reverse f O) open.X and x ∈(reverse f O).

We just here note that the translator may use directly the hypothesis
instead of its name

• Here is the end of the proof:

...
H3:= O ⊂ V...
H5:= (reverse f O) open.X

∧ x ∈(reverse f O)

` (reverse f V ) neighbourhood.X x

As f−1(O) ⊂ f−1(V ), the proof is finished.

⇓
deduce (reverse f O) ⊂ (reverse f V ) trivial.

The difficulty here is that the word ’as’, unlike in the previous step, does
not refer to an hypothesis already proven but to a fact that seems obvious to
the user. So the new command here must be deduce and not by. Finally,
when the proof is finished (explicitly said as here or not) the last command
must be trivial, that is the result must be proven in the last state of the proof
by the automatic prover.

6



Thévenon

4 The validation of meta-rules

In this part we explain how the meta-rules coming from the new command
could be validated by an automatic prover. As the current automatic tactic
of PhoX is not powerful enough for the new commands, we need another
one, dedicated to the problem. The idea is in fact to implement an inverse
resolution method in a lazy way. The purpose of this paper is not to define
it, we will just give some examples and hope that they are clear enough.
We assume anyway that the reader knows what is the resolution method.
Otherwise, see some of the references given, for instance [2] and [5].

We forget the previous example and take another ones, better for purposes
of readability. In fact we will give two examples. For each we give the current
step of the proof then the sequent given to the automatic prover, to finish
with the proof.

A simple example

• Consider the following formula:

∀i ∈ I A ∩ h(i) = f(i) ⇒ A ∩
⋂
i∈I

h(i) =
⋂
i∈I

f(i)

It is obvious that it is an implication P → Q. Thus to prove it we take P as
an hypothesis and Q as the goal. We obtain the following sequent to prove
which is solved by the given new command:

E0:= ∀i ∈ I A ∩ h i = f i
` A ∩ (Inter h I) ⊂ (Inter f I)

let x ∈ A ∩ (Inter h I) show x ∈(Inter f I).

Where Inter f I is the notation for the intersection of the f(i) for i ∈ I.

• To validate the new command, that is to validate the meta-rule associ-
ated to this situation, the automatic prover has to be able to prove the sequent
below (which should never appear to the user):

E0:= ∀i ∈ I A ∩ h i = f i
` ∀x [x ∈ A ∩ (Inter h I) → x ∈(Inter f I)]

→
A ∩ (Inter h I) ⊂ (Inter f I)

Simplifying the formulae by using generic names and thanks to the defi-
nition of a subset (X ⊂ Y := ∀x x ∈ X → x ∈ Y ) it is equivalent to the
following sequent:

E0
` K → K

7



Thévenon

• This is very easy to prove by any prover. We see here that in some cases
the formula given to the automatic prover is just a propositional tautology.
Note however that here K represents a formula which is not propositional.
Thus the automatic tactic must not see in detail what is the formula. It
decomposes only the formula K → K and ends the proof when it unifies K
and K. Formulae can be seen as ’black boxes’ until a decomposition is needed.

Note that after this proof, the new command is validated, and that the
current sequent (printed for the user) becomes:

E0:= ∀i ∈ I A ∩ h i = f i
E1:= x ∈ A ∩ (Inter h I)

` x ∈(Inter f I)

Two things have been done between the two states of the proof: an in-
troduction of a universal quantifier and an introduction of an arrow. An
important thing to notice is that the automatic tactic didn’t have to make
these introductions, as they are implied by the syntax of the new command.
The automatic tactic just has to validate the meta-rule. And in this case it is
possible by proving a propositionnal formula.

A more difficult one

• Let F be a closed set and (xn)n ⊂ F . While proving that

(xn)n converging to a → a ∈ F

we take a sequence (xn)n of F converging to a. As F is closed it suffices to
take a neighbourhood V of a and to show that F ∩ V is not empty. So we get
the following sequent (the dots replace some hypotheses like F closed that we
will not need) and new command:

...
G:= ∀V (V neighbourhood a → ∃n ∈ N xn ∈ V )
H:= V neighbourhood a
` ∃y ∈ F ∩ V

by [G] with [H] let n ∈ N assume xn ∈ V .

• To this is associated the following sequent given to the automatic prover
(the hypotheses are the same, they are our environment):

...
G:= ∀V (V neighbourhood a → ∃n ∈ N xn ∈ V )
H:= V neighbourhood a
` ∀n ∈ N (xn ∈ V → ∃y ∈ F ∩ V )

→ ∃y ∈ F ∩ V

8



Thévenon

Remember that the commands by and with have no influence on the
formula, they just give some information to the automatic prover. And here
the information is very good, as only the two hypotheses named will be used
to prove the property.

We can again simplify by giving names to some sub-formulae and deleting
the useless hypotheses:

G:= ∀ V (H[V ] → ∃n (n ∈ N ∧ xn ∈ V ))
H:= H[V ]
` ∀n (n ∈ N → xn ∈ V → K) → K

• And now how can the automatic tactic prove this sequent ? As we have
already said we will use a resolution method. So we start with a first set of
clauses. We add one clause for each hypothesis and we negate the goal to
obtain the last one:

C1:={∀V (H[V ] → ∃n (n ∈ N ∧ xn ∈ V ))}
C2:={H[V ]}
G:={¬ [∀n (n ∈ N → xn ∈ V → K) → K]}

We follow now what should be the better way to find a contradiction. First
we decompose the goal G (¬(A → B) is seen as A ∧ ¬B) to obtain two new
clauses C3 and G′:

C1:={∀V (H[V ] → ∃n (n ∈ N ∧ xn ∈ V ))}
C2:={H[V ]}
C3:={∀n (n ∈ N → xn ∈ V → K)}
G′:={¬K}

Then we decompose the clause C1, obtaining a variable of unification V ?,
giving C ′

1 and the clause C3, obtaining a variable of unification n? and we
rewrite the clause obtained C ′

3:

C ′
1:={(H[V ?] → ∃n (n ∈ N ∧ V ? (x n)))}

C2:={H[V ]}
C ′

3:={¬n? ∈ N ∨ ¬xn? ∈ V ∨ K)}
G′:={¬K}

Now considering that A → B is equivalent to ¬A ∨ B, we can apply the
resolution rule between C ′

1 and C2 to obtain C4:

C4:={∃n (n ∈ N ∧ xn ∈ V )}
C ′

3:={¬n? ∈ N ∨ ¬xn? ∈ V ∨ K)}
G′:={¬K}

Now we decompose the clause C4, obtaining a constant of unification n in
a clause C ′

4:

9



Thévenon

C ′
4:={n ∈ N ∧ xn ∈ V }

C ′
3:={¬n? ∈ N ∨ ¬xn? ∈ V ∨ K)}

G′:={¬K}

Decomposing the clause C ′
4 we get two new clauses C5 and C6:

C5:={n ∈ N}
C6:={xn ∈ V }
C ′

3:={¬n? ∈ N ∨ ¬xn? ∈ V ∨ K)}
G′:={¬K}

We see now that we can apply some resolution rules between C5, C6, G′

and C ′
3 to obtain the empty clause �, which ends the proof.

What can we conclude about what we have just seen ? That our way to
apply a resolution strategy is not standard. In fact it is in some sense an
inverse resolution strategy: the formulae are decomposed only when needed,
we are not dealing with conjunctive normal forms of atomic formulae as it is
done in the classical resolution method.

We can often see that most of the sub-formulae are useless for the auto-
matic tactic. For example it does not need to know what is the formula K
when it proves K → K. So formulae are kept as they are and decomposed
only when needed. This is why we call our method an ’inverse resolution in a
lazy way’. So The commands by and with are very useful to indicate which
hypotheses should be more quickly decomposed than the others.

5 Conclusion

What we have seen here is an overview of the DemoNat project which is not
yet implemented (except PhoX and PhoX.nc). Some of the difficulties that
can appear in the linguistic part of the project have been pointed out. In
the basic example given they seem not to be strong: we have only done a
translation sentence by sentence.

In fact there are two ways of thinking the system. The first one is to
validate a whole proof and so to read the complete text of the proof. In this
case the system has a great freedom on the parts translated into PhoX.nc.
The second one is to build a proof, i.e. the user interacts with the system.
He writes a proof and when he needs to know what is the current state of the
proof he tells it to the analyzer. Then the system analyses the part asked by
the user.

In both cases the context must be kept by the system after each step.
This is needed to be able to solve the problems of anaphoras. Moreover the
translation must be able to give the ”hints” to the automatic tactic in order
to help it in proving the formulae implied by the new command. The user
may not give them each time and so a study of the context may help to find
the important hypotheses. This part is really an essential one and makes a

10



Thévenon

difference with usual theorem provers.

As we have seen, a good way to handle with the formulae implied by the
commands of PhoX.nc is to implement an inverse resolution in a lazy way.
Indeed the formulae given to the automatic prover seem to be particular:
most of them are propositional or need the use of few quantifiers. We could
think about a prover becoming stronger when the user is a more advanced
student. This means that the system may reject steps of the proof if it sees
that they are too difficult for a beginner for example.

References

[1] C.-L. Chang and R. C.-T. Lee, Symbolic Logic and mechanical Theorem proving,
Academic Press 1973.

[2] R. David, K. Nour and C. Raffalli, Introduction la logique, Dunod 2001.

[3] D. A. Duffy, Principles of automated theorem proving, Wiley 1991.

[4] M. Fitting, First-order Logic and automated Theorem proving, Springer-Verlag
1990.

[5] A. Leitsch, The Resolution Calculus, Springer-Verlag 1997.

[6] T. Tammet, Resolution Theorem Prover for Intuitionistic Logic, in CADE-13,
LNCS 1104, Springer-Verlag 1996.

[7] T. Tammet, Resolution, inverse method and the sequent calculus, University of
Göteborg and Chalmers University of Technology.

11


	Introduction
	New_command: a meta-rule
	The translation
	The validation of meta-rules
	Conclusion
	References

