A universal prover

Patrick Thévenon, PhD Student

Université de Savoie, Chambéry Laboratoire de mathématiques, LAMA

Introduction

- Aim : having a prover able to deal with
 - any logic given (Universal prover)
 - Hints given to guide the proof
- Main features :
 - Functor
 - Inverse resolution
 - Clauses balanced by weights

The prover as a functor

module Prover : functor (Logic : Logic) ->

sig

```
Exception Prove_fails
```

val prove : (formula * int * constraints) list
 -> formula
 -> unit
(* raises Prove_fails when no proof is found *)

end

To have a prover :

- give a logic
- apply the functor to it.

Logic required

```
module type Logic =
```

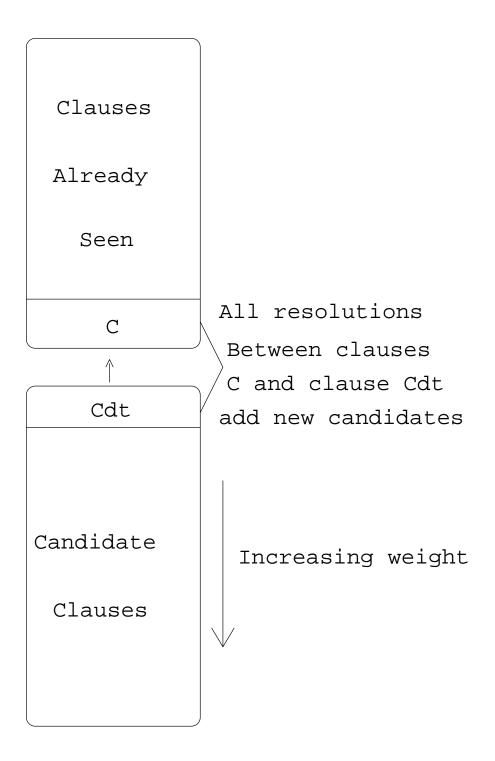
sig

type formula (form)
val elim_all_neg : form -> form
....
type substitution (subs)
type constraints (csts)
val unif : csts -> form -> csts -> form ->
 int * subs * csts * form * form list
val get_rules : csts -> form -> bool ->

(string * int * subs * csts * form list) list

end

Architecture



Decomposition and resolution

Inverse resolution : a clause is a set of literals, which are formulas that are not necessarily atomic.

Lazy decomposition : formulas are seen as black boxes, and decomposed only when a subformula can be unified with an other literal.

Decomposing formulas can be seen as making resolution with rule clauses...

. . .

Example :

Let $\{F^{\perp}, \Gamma\}$ be a clause with $F = (A \to B)$ From $F \leftrightarrow (A \to B)$ we obtain two clauses :

 $\{A, \Gamma\}$ and $\{B^{\perp}, \Gamma\}$

It can be seen as resolutions with the following clauses on the literal $F \equiv X_1 \rightarrow X_2$:

$$\{X_1, X_1 \to X_2\}$$
 and $\{X_2^{\perp}, X_1 \to X_2\}$

 \rightarrow Decomposing is making resolution with rule clauses.

 \rightarrow get_rules asks for each formula which rules can be applied.

The constraints

For each unification - applying rules or making resolutions - constraints may be given and used.

Examples :

- 1. Skolemization : Decomposing $\exists x.P(x)$, Make a clause with P(x), x a new variable with a constraint saying that x depends only on the free variables of P. This avoids the use of the choice axiom for higher order logic.
- 2. Contraction : Contracting $C = \{A, A', \Gamma\}$, add a constraint $A \neq A'$ in C, to avoid possibly subsumption with clauses coming from $\{A\sigma, \Gamma\sigma\}$.
- 3. Intuitionistic logic?
- 4. Linear logic?

Dealing with Hints

H :=
$$A \land B$$

H0 := $A \rightarrow C$
H1 := D
 $\vdash C$
By H0 and H trivial.

Hypotheses have a lighter weight when they are named.

H := $\forall x.B(x)$ H0 := C(x0) $\vdash \exists x.B(x) \land C(x)$ By H with x = x0, by H0 trivial.

The hint x = x0 can be given as a constraint. A unification that changes x into x0 has a lighter weight.

Conclusion

A very young prover that

- needs great improvements but
- may offer a good solution for the DemoNat project