
A universal prover

Patrick Thévenon, PhD Student

Université de Savoie,Chambéry

Laboratoire de mathématiques,LAMA

Introduction

• Aim : having a prover able to deal with

– any logic given (Universal prover)

– Hints given to guide the proof

• Main features :

– Functor

– Inverse resolution

– Clauses balanced by weights

The prover as a
functor

module Prover : functor (Logic : Logic) ->

sig

Exception Prove fails

val prove : (formula * int * constraints) list

-> formula

-> unit

(* raises Prove fails when no proof is found *)

end

To have a prover :

– give a logic

– apply the functor to it.

Logic required

module type Logic =

sig

type formula (form)

val elim all neg : form -> form

. . .

type substitution (subs)

type constraints (csts)

val unif : csts -> form -> csts -> form ->

int * subs * csts * form * form list

val get rules : csts -> form -> bool ->

(string * int * subs * csts * form list) list

end

Architecture

C

Cdt

Increasing weight

Seen

Already

Clauses

Candidate

Clauses

Between clauses

C and clause Cdt

add new candidates

All resolutions

Decomposition and
resolution

Inverse resolution : a clause is a set of lite-

rals, which are formulas that are not necessarily

atomic.

Lazy decomposition : formulas are seen as

black boxes, and decomposed only when a sub-

formula can be unified with an other literal.

Decomposing formulas can be seen as ma-

king resolution with rule clauses...

...

Example :

Let {F⊥,Γ} be a clause with F = (A → B)

From F ↔ (A → B) we obtain two clauses :

{A,Γ} and {B⊥,Γ}

It can be seen as resolutions with the following

clauses on the literal F ≡ X1 → X2 :

{X1, X1 → X2} and {X⊥
2 , X1 → X2}

→ Decomposing is making resolution with rule

clauses.

→ get rules asks for each formula which rules

can be applied.

The constraints

For each unification - applying rules or ma-

king resolutions - constraints may be given and

used.

Examples :

1. Skolemization : Decomposing ∃x.P (x),

Make a clause with P (x), x a new variable

with a constraint saying that x depends

only on the free variables of P . This avoids

the use of the choice axiom for higher order

logic.

2. Contraction : Contracting C = {A, A′,Γ},

add a constraint A 6= A′ in C, to avoid

possibly subsumption with clauses coming

from {Aσ,Γσ}.

3. Intuitionistic logic ?

4. Linear logic ?

Dealing with Hints

H := A ∧ B

H0 := A → C

H1 := D

` C

By H0 and H trivial.

Hypotheses have a lighter weight when they

are named.

H := ∀x.B(x)

H0 := C(x0)

` ∃x.B(x) ∧ C(x)

By H with x = x0, by H0 trivial.

The hint x = x0 can be given as a constraint.

A unification that changes x into x0 has a ligh-

ter weight.

Conclusion

A very young prover that

• needs great improvements but

• may offer a good solution for the DemoNat

project

